Log in

Soft Computing Techniques for Land Use and Land Cover Monitoring with Multispectral Remote Sensing Images: A Review

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Multispectral remote sensing images are the primary source in the land use and land cover (LULC) monitoring. This is achieved by LULC classification and LULC change detection. The change detection in LULC includes the detection of water bodies, forest fire, forest degradation, agriculture areas monitoring, etc. Various change detection and LULC classification methods have their own advantages and disadvantages, and no single method is optimal and finds applicability for all cases. This paper summarizes and analyses the various soft computing and feature extraction techniques used for LULC classification and change detection. Based on the average error rate, performances of the different soft computing techniques are evaluated. The broad usage of multispectral remote sensing images, object-based change detection, neural networks and various levels of image fusion methods offer more potential in LULC monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ghosh A, Subudhi BN, Bruzzone L (2013) Integration of gibbs Markov random field and hopfield-type neural networks for unsupervised change detection in remotely sensed multitemporal images. IEEE Trans Image Process 22 (8):3087–3096

    MathSciNet  MATH  Google Scholar 

  2. Meng Z, **ao B (2011) High-resolution satellite image classification and segmentation using laplacian graph energy. In: 2011 IEEE International geoscience and remote sensing symposium (IGARSS). IEEE, New Jersey, pp 605–608

    Google Scholar 

  3. Alhussein M (2016) Image tampering detection based on local texture descriptor and extreme learning machine. In: 2016 UKSim-AMSS 18th international conference on computer modelling and simulation. IEEE, New Jersey. doi:10.1109/UKSim.2016.39

    Google Scholar 

  4. Neofytou MS, Pattichis MS, Pattichis CS (2006) Texture-based classification of hysteroscopy images of the endometrium. In: 2006 EMBS annual international conference. IEEE, New Jersey, pp 3005–3008

    Google Scholar 

  5. Benediktsson JA, Chanussot J, Moon WM (2012) Very high-resolution remote sensing: challenges and opportunities. Proc IEEE 100(6):1907–1910

    Google Scholar 

  6. http://www.seos-project.eu/modules/remotesensing/remotesensing-c03-p02.html. Accessed 14 April 2017

  7. Gandhimathi S, Vasuki S, Ariputhiran G (2012) Atmospheric correction of remotely sensed multispectral satellite images in transform domain. In: 2012 IEEE-fourth international conference on advanced computing, ICoAC 2012, MIT, Anna University, Chennai

    Google Scholar 

  8. http://glcf.umd.edu/data/landsat. Accessed 15 April 2017

  9. http://landsat.gsfc.nasa.gov/landsat-8/landsat-8-bands/. Accessed 15 April 2017

  10. http://www.bhuvan.nrse.gov.in. Accessed 15 April 2017

  11. http://www.satimagingcorp.com/gallery/more-imagery/spot-5/. Accessed 15 April 2017

  12. http://www.satimagingcorp.com/satellite-sensors/quickbird/. Accessed 15 April 2017

  13. http://www.esa.int/spaceinimages/Missions/Envisat. Accessed 15 April 2017

  14. https://Earth.esa.int/web/guest/missions/esa-operational-eo-missions/ers. Accessed 15 April 2017

  15. http://aviris.jpl.nasa.gov/html/overview.html. Accessed 15 April 2017

  16. http://www.isro.gov.in/category-spacecraft/irs-p6-resourcesat-1. Accessed 15 April 2017

  17. https://www.asf.alaska.edu/sar-data/jers-1/. Accessed 15 April 2017

  18. https://eo1.gsfc.nasa.gov/. Accessed 15 April 2017

  19. http://www.asc-csa.gc.ca/eng/satellites/radarsat2/. Accessed 15 April 2017

  20. http://www.satimagingcorp.com/gallery/ikonos/. Accessed 15 April 2017

  21. https://Earth.esa.int/web/guest/missions/3rd-party-missions/historical-missions/alos/instruments/avnir-2. Accessed 15 April 2017

  22. https://directory.eoportal.org/web/eoportal/satellite-missions/h/hj-1. Accessed 15 April 2017

  23. http://asterweb.jpl.nasa.gov/. Accessed 15 April 2017

  24. http://www.itres.com/casi-1500/. Accessed 15 April 2017

  25. http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10008/. Accessed 15 April 2017

  26. Rajadell O, Garcia-Sevilla P, Pla F (2009) Textural features for hyperspectral pixel classification. Springer, Berlin, pp 208–216

    Google Scholar 

  27. Eisa M, ElGamal A, Ghoneim R, Bahey A (2010) Local binary patterns as texture descriptors for user attitude recognition. Int J ComputSci Netw Secur 10(6):222–229

    Google Scholar 

  28. Vaccaro R, Smits PC, Dellepiane SG (2000) Exploiting spatial correlation features for SAR image analysis. IEEE Trans Geosci Remote Sens 38(3):1212–1223

    Google Scholar 

  29. Lee C-H, Shih J-L, Yu K-M, Lin H-S (2009) Automatic music genre classification based on modulation spectral analysis of spectral and cepstral features. IEEE Trans Multimed 11(4):670–682

    Google Scholar 

  30. Somers B, Delalieux S, Verstraeten WW, Verbesselt J, Lhermitte S, Coppin P (2009) Magnitude-and shape-related feature integration in hyperspectral mixture analysis to monitor weeds in citrus orchards. IEEE Trans Geosci Remote Sens 47(11): 3630–3642

    Google Scholar 

  31. Taplidou SA, Hadjileontiadis LJ (2010) Analysis of wheezes using wavelet higher order spectral features. IEEE Trans Biomed Eng 57(7): pp 1596–1610

    Google Scholar 

  32. Li Z, Tang J (2015) Unsupervised feature selection via nonnegative spectral analysis and redundancy control. IEEE Trans Image Process 24(12):5343–5355

    MathSciNet  MATH  Google Scholar 

  33. Kuffer M, Pfeffer K, Sliuzas R, Baud I (2016) Extraction of slum areas from VHR imagery using GLCM variance. IEEE J Sel Top Appl Earth Obs Remote Sens 9(5):1830–1840

    Google Scholar 

  34. Paul S, Pati UC (2016) Remote sensing optical image registration using modified uniform robust SIFT. IEEE Geosci Remote Sens Lett 13(9):1300–1304

    Google Scholar 

  35. Yang M-C, Moon WK, Wang Y-CF, Bae MS, Huang C-S, Chen J-H, Chang R-F (2013) Robust texture analysis using multi-resolution gray-scale invariant features for breast sonographic tumor diagnosis. IEEE Trans Med Imaging 32(12):2262–2273

    Google Scholar 

  36. Shang Z, Li M (2016) Combined feature extraction and selection in texture analysis. In: 2016 9th international symposium on computational intelligence and design. doi:10.1109/ISCID.2016.97

  37. Ming JTC, Rijal OM, Kassim RM, Yunus A, Noor NM (2016) Texture-based classification for reticular pattern and ground glass opacity in high resolution computed tomography thorax images. In: 2016 IEEE EMBS conference on biomedical engineering and sciences (IECBES). IEEE, New Jersey, pp 230–234. ISBN: 978-1-4673-7791-1

    Google Scholar 

  38. Al-Sahaf H, Al-Sahaf A, Xue B, Johnston M, Zhang M (2016) Automatically evolving rotation-invariant texture image descriptors by genetic programming. IEEE Trans Evol Comput. doi:10.1109/TEVC.2016.2577548

    Google Scholar 

  39. Vicente AMP, Rabaça T, Pereira AJSC (2007) Classification of satellite images applied to geological map** (Douro Region–Northeastern Portugal). In: 2007 IEEE international geoscience and remote sensing symposium. IEEE, New Jersey, pp 1661–1664

    Google Scholar 

  40. Stavrakoudis DG, Theocharis JB (2009) An evolutionary fuzzy classifier for satellite image classification. In: 2009 17th mediterranean conference on control & automation Makedonia Palace, Thessaloniki, Greece, June 24–26. IEEE, New Jersey, pp 383–388

    Google Scholar 

  41. Dai D, Yang W (2011) Satellite image classification via two-layer sparse coding with biased image representation. IEEE Remote Sens Lett 8(1): 173–176

    Google Scholar 

  42. Park DC, Jeong T, Lee Y, Min SY (2011) Satellite image classification using a classifier integration model. In: 2011 9th IEEE/ACS international conference on computer systems and applications (AICCSA). IEEE, New Jersey

    Google Scholar 

  43. Park DC (2011) Classification of satellite images using partitioned-feature based classifier model. In: 2011 9th IEEE/ACS international conference on computer systems and applications (AICCSA). IEEE, New Jersey

    Google Scholar 

  44. Sheng G, Yang W, Yu L, Sun H (2012) Cluster structured sparse representation for high resolution satellite image classification. In 2010 ICSP2012 Proceedings. IEEE, New Jersey, pp 693–696

    Google Scholar 

  45. Almendros-Jiménez JM, Domene L, Piedra-Fernández JA (2013) A framework for ocean satellite image classification based on ontologies. IEEE J Sel Top Appl Earth Obs Remote Sens. 6(2):1048–1063

    Google Scholar 

  46. Senthilnath J, Omkar SN, Mani V, Tejovanth N, Diwakar PG, Shenoy A (2011) Multi-Spectral satellite image classification using glowworm swarm optimization. In: 2011 IEEE international geoscience and remote sensing symposium (IGARSS). IEEE, New Jersey, pp 47–50

    Google Scholar 

  47. Kantakumar LN, Neelamsetti P (2015) Multi-temporal land use classification using hybrid approach. Egypt J Remote Sens Space Sci 18:289–295

    Google Scholar 

  48. Bayraktar H, Bayram B (2009) Fuzzy logic analysis of flood disaster monitoring and assessment of damage in SE Anatolia Turkey. In: 2009 4th international conference on recent advances in space technologies. IEEE, New Jersey, pp 13–17. ISBN: 978-1-4244-3628-6

    Google Scholar 

  49. Menaka D, Padma Suresh L, Selvin Prem Kumar S (2014) Land Cover Classification of Multispectral Satellite Images Using QDA Classifier. In: 2014 international conference on control, instrumentation, communication and computational technologies (ICCICCT). IEEE, New Jersey, pp 1383–1386

    Google Scholar 

  50. Agrawala RK, Bawane NG (2015) Multiobjective PSO based adaption of neural network topology for pixel classification in satellite imagery. Appl Soft Comput 28:217–225

    Google Scholar 

  51. Uma Shankar B, Meher SK, Ghosh A (2011) Wavelet-fuzzy hybridization: feature-extraction and land-cover classification of remote sensing images. Appl Soft Comput 11:2999–3011

    Google Scholar 

  52. Mehera SK, Pal SK (2011) Rough-wavelet granular space and classification of multispectral remote sensing image. Appl Soft Comput 11:5662–5673

    Google Scholar 

  53. Goel L, Gupta D, Panchal VK (2012) Hybrid bio-inspired techniques for land cover feature extraction: A remote sensing perspective. Appl Soft Comput 12:832–849

    Google Scholar 

  54. Ghosh A, Datta A, Ghosh S (2013) Self-adaptive differential evolution for feature selection in hyper spectral image data. Appl Soft Comput 13:1969–1977

    Google Scholar 

  55. Goel L, Gupta D, Panchal VK (2013) Biogeography and geo-sciences based land cover feature extraction. Appl Soft Comput 13:4194–4208

    Google Scholar 

  56. Yang D, Wang L, Hei X, Gong M (2014) An efficient automatic SAR image segmentation framework in AIS using kernel clustering index and histogram statistics. Appl Soft Comput 16:63–79

    Google Scholar 

  57. Iounousse J, Er-Raki E, Motassadeq AE, Chehouani H (2015) Using an unsupervised approach of Probabilistic Neural Network (PNN) for land use classification from multitemporal satellite images. Appl Soft Comput 30:1–13

    Google Scholar 

  58. Durduran SS (2015) Automatic classification of high resolution land cover using a new data weighting procedure: the combination of K-means clustering algorithm and central tendency measures (KMC–CTM). Appl Soft Comput 35:136–150

    Google Scholar 

  59. Halder A, Ghosh A, Ghosh S (2011) Supervised and unsupervised landuse map generation from remotely sensed images using ant based systems. Appl Soft Comput 11:5770–5781

    Google Scholar 

  60. Chen Y, Jiang H, Li C, Jia X, Ghamisi P (2016) Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans Geosci Remote Sens 54(10):6232–6251

    Google Scholar 

  61. Panda SS, Hoogenboom G, Paz J (2009) Distinguishing blueberry bushes from mixed vegetation land use using high resolution satellite imagery and geospatial techniques. Comput Electron Agric 67:51–58

    Google Scholar 

  62. da Silva AF, Barbosa AP, Zimback CR, Paulo CRL, Landim MB, Soares A (2015) Estimation of croplands using indicator kriging and fuzzy classification. Comput Electron Agric 111:1–11

    Google Scholar 

  63. Jenicka S, Suruliandi A (2014) A textural approach for land cover classification of remotely sensed image. CSIT 2(1):1–9

    Google Scholar 

  64. Pan X, Zhang S, Zhang H, Na X, Li X (2010) A variable precision rough set approach to the remote sensing land use/cover classification. Comput Geosci 36:1466–1473

    Google Scholar 

  65. Petropoulos GP, Kalaitzidis C, Vadrevu KP (2012) Support vector machines and object-based classification for obtaining land-use/cover cartography from hyperion hyperspectral imagery. Comput Geosci 41:99–107

    Google Scholar 

  66. Banerjee B, Krishna Mohan B (2014) A novel graph based fuzzy clustering technique for unsupervised classification of remote sensing images. ISPRS Ann Photogr Remote Sens Spat Inf Sci 2(8):165–170

    Google Scholar 

  67. Yousefi S, Mirzaee S, Tazehc M, Pourghasemi H, Karimi H (2015) Comparison of different algorithms for land use map** in dry climate using satellite images: a case study of the Central regions of Iran. Desert 20(1):1–10

    Google Scholar 

  68. Banerjee B, Bovolo F, Bhattacharya A, Bruzzone L, Chaudhuri S, Krishna Mohan B (2015) A new self-training based unsupervised satellite image classification technique using cluster ensemble strategy. IEEE Remote Sens Lett 12(4):741–745

    Google Scholar 

  69. Zhao J, Zhong Y, Shu H, Zhang L (2016) High-resolution image classification integrating spectral-spatial-location cues by conditional random fields. IEEE Trans Image Process 25(9):4033–4045

    MathSciNet  MATH  Google Scholar 

  70. Zhang E, Jiao L, Zhang X, Liu H, Wang S (2016) Class-level joint sparse representation for multi feature-based hyperspectral image classification. IEEE J Sel Top Appl Earth Obs Remote Sens 9(9):4160–4177

    Google Scholar 

  71. Zhou X, Prasad S, Crawford MM (2016) Wavelet-domain multi view active learning for spatial–spectral hyperspectral image classification. IEEE J Sel Top Appl Earth Obs Remote Sens 9(9):4047–4059

    Google Scholar 

  72. Soomro BN, **ao L, Huang L, Soomro SH, Molaei M (2016) Bilayer elastic net regression model for supervised spectral-spatial hyperspectral image classification. IEEE J Sel Top Appl Earth Obs Remote Sens 9(9):4102–4116

    Google Scholar 

  73. Arisoy S, Kayabol K (2016) Mixture-based super pixel segmentation and classification of SAR images. IEEE Remote Sens Lett 13(11):1721–1726

    Google Scholar 

  74. Aswatha SM, Mukherjee J, Biswas PK, Aikat S (2016) Toward automated land cover classification in landsat images using spectral slopes at different bands. IEEE J Sel Top Appl Earth Obs Remote Sens. doi:10.1109/JSTARS.2016.2602390

    Google Scholar 

  75. Toksoz MA, Ulusoy I (2016) Hyperspectral image classification via kernel basic thresholding classifier. IEEE Trans Geosci Remote Sens. doi:10.1109/TGRS.2016.2613931

    Google Scholar 

  76. Aptoula E, Ozdemir MC, Yanikoglu B (2016) Deep learning with attribute profiles for hyperspectral image classification. IEEE Remote Sens Lett. doi:10.1109/LGRS.2016.2619354

    Google Scholar 

  77. Wei Li, Guodong Wu, Zhang F, Du Q (2016) Hyperspectral image classification using deep pixel, -pair features. IEEE Trans Geosci Remote Sens. doi:10.1109/TGRS.2016.2616355

    Google Scholar 

  78. Yang MD, Huang KS, Yang YF, Lu LY, Feng ZY, Tsai HP (2016) Hyperspectral image classification using fast and adaptive dimensional empirical mode decomposition with minimum noise fraction. IEEE Geosci Remote Sens Lett. doi:10.1109/LGRS.2016.2618930

    Google Scholar 

  79. Vasilakos A, Stathakis D (2005) Granular neural networks for land use classification. Soft Comput 9:332–340

    Google Scholar 

  80. Stavrakoudis DG, Theocharis JB, Zalidis GC (2011) A multistage genetic fuzzy classifier for land cover classification from satellite imagery. Soft Comput 15:2355–2374

    Google Scholar 

  81. Alok AK, Saha S, Ekbal A (2015) Multi-objective semi-supervised clustering for automatic pixel classification from remote sensing imagery. SoftComputing. doi:10.1007/s00500-015-1701-x

    Google Scholar 

  82. Giriraja CV, Haswanth A, Srinivasa C, Jaya Ram TK, Krishnaiah P (2014) Satellite image classification using unsupervised learning and sifT. In: 2014 ICONIAAC ‘14, October 10–11 2014, Amritapuri, India. ACM, Amritapuri, ISBN: 978-1-4503-2908-8

    Google Scholar 

  83. Srimani PK, Prasad N (2010) Analysis and evaluation of classifiers using multi-temporal images in land use and land cover map**. In: 2010 A2CWiC, September 16-17, India. ACM-W, Coimbatore, ISBN: 978-1-4503-0194-7

    Google Scholar 

  84. Basu S, Ganguly S, Mukhopadhyay S, DiBiano R, Karki M, Nemani R (2015) DeepSat—a learning framework for satellite imagery. In: 2015 SIGSPATIAL’15, November 03–06, 2015, Bellevue, WA. ACM, Bellevue, ISBN: 978-1-4503-3967-4

    Google Scholar 

  85. Rizvi IA, Mohan BK, Bhatia PR (2010) Automatic object extraction using object based image classification technique from high resolution remotely sensed images. In: 2010 ICWET’10, Mumbai, Maharashtra, India. ACM, Mumbai. ISBN: 978-1-60558-812-4, pp. 623–628

    Google Scholar 

  86. Pant T, Singh D, Srivastava T (2010) Application of fractal parameters for unsupervised classification of SAR images: a simulation based study. In: 2010 IITM’10, December 28-30, 2010, Allahabad, UP, India. ACM, Allahabad, pp. 45–50. ISBN: 978-1-4503-0408-5

    Google Scholar 

  87. Senthilnath J, Kulkarni S, Benediktsson JA, Yang XS (2016) A novel approach for multispectral satellite image classification based on the bat algorithm. IEEE Geosci Remote Sens Lett 13(4):599–603

    Google Scholar 

  88. Sheng G, Yang W, Chen L, Sun H (2010) Satellite image classification using sparse codes of multiple features. In: 2010 ICSP2010 Proceedings. IEEE, New Jersey, pp. 592–595

    Google Scholar 

  89. Hwang JT, Chiang HC (2010) The study of high resolution satellite image classification based on support vector machine. In: 2010 18th international conference on geoinformatics. IEEE, New Jersey

    Google Scholar 

  90. Hwang JT, Chang KT, Chiang HC (2011) Satellite image classification based on gabor texture features and SVM. In: 2010 19th international conference on geoinformatics. IEEE, New Jersey

    Google Scholar 

  91. Kerroume MA, Hammouche A, Aboutajdinee D, Bellaachia A (2008) Using the maximum mutual information criterion to textural feature selection for satellite image classification. In: 2008 IEEE symposium on computers and communications. IEEE, New Jersey, pp. 1005–1009

    Google Scholar 

  92. Gordo O, Martínez E, Gonzalo C, Arquero A (2011) Classification of satellite images by means of fuzzy rules generated by a genetic algorithm. IEEE Latin Am Trans 9(1):9–14

    Google Scholar 

  93. Huaxin Z, **ao B, Huijie Z (2011) A novel approach for satellite image classification using local self-similarity. IEEE international geoscience and remote sensing symposium (IGARSS). IEEE, New Jersey, pp. 2888–2891

    Google Scholar 

  94. Vignesh T, Thyagharajan KK, Murugan D, Sakthivel M, Pushparaj S (2016) A novel multiple unsupervised algorithm for land use/land cover classification. Indian J Sci Technol 9(42):1–12. doi:10.17485/ijst/2016/v9i42/99682

    Google Scholar 

  95. Mangala R, Bhirud SG (2011) Extraction of road network from high resolution satellite images using ANN. In: 2011 ICWET’11, February 25–26, 2011, Mumbai, Maharashtra, India. ACM, Mumbai, pp. 899–906. ISBN: 978-1-4503-0449-8

    Google Scholar 

  96. Galal A, Hassan H, Imam IF (2012) A novel approach for measuring hyperspectral similarity. Appl Soft Comput 12:3115–3123

    Google Scholar 

  97. Saleem S, Bais A, Sablatnig R (2016) Towards feature points based image matching between satellite imagery and aerial photographs of agriculture land. Comput Electron Agric 126:12–20

    Google Scholar 

  98. Jakubauskas ME, Legates DR, Kastens JH (2002) Crop identification using harmonic analysis of time-series AVHRR NDVI data. Comput Electron Agric 37:127–139

    Google Scholar 

  99. Qiu B, Wang Z, Tang Z, Chen C, Fan Z, Li W (2016) Automated crop** intensity extraction from isolines of wavelet spectra. Comput Electron Agric 125:1–11

    Google Scholar 

  100. Ma X, Geng J, Wang H (2016) Spectral–spatial classification of hyperspectral image based on deep auto-encoder. IEEE J Sel Top Appl Earth Obs Remote Sens 9(9):4073–4085

    Google Scholar 

  101. Liu J, Wu Z, Li J, **ao L, Plaza A (2016) Spatial–spectral hyperspectral image classification using random multiscale representation. IEEE J Sel Top Appl Earth Obs Remote Sens 9(9):4129–4140

    Google Scholar 

  102. Zhang X, Song Q, Gao Z, Zheng Y, Weng P, Jiao LC (2016) Spectral–spatial feature learning using cluster-based group sparse coding for hyperspectral image classification. IEEE J Sel Top Appl Earth Obs Remote Sens 9(9):4142–4159

    Google Scholar 

  103. Li J, Du Q, Li Y (2015) An efficient radial basis function neural network for hyperspectral remote sensing image classification. Soft Comput. doi:10.1007/s00500-015-1739-9

    Google Scholar 

  104. Zaaboub W, Dhiaf ZB (2014) Approach of texture signature determination—application to forest cover classification of high resolution satellite image. In: 2014 International conference of soft computing and pattern recognition. IEEE, New Jersey, pp. 325–330

    Google Scholar 

  105. Karkee M, Steward BL, Tang L, Ziz SA (2009) Quantifying sub-pixel signature of paddy rice field using an artificial neural network. Comput Electron Agric 6(50):65–76

    Google Scholar 

  106. Ross BJ, Gualtieri AG, Fueten F, Budkewitsch P (2005) Hyperspectral image analysis using genetic programming. Appl Soft Comput 5:147–156

    Google Scholar 

  107. Maggiori E, Tarabalka Y, Charpiat G, Alliez P (2017) Convolutional neural networks for large-scale remote-sensing image classification. IEEE J Sel Top Appl Earth Obs Remote Sens. doi:10.1109/TGRS.2016.2612821

    Google Scholar 

  108. Mishra B, Susaki J (2014) Sensitivity analysis for l-band polarimetric descriptors and fusion for urban land cover change detection. IEEE J Sel Top Appl Earth Obs Remote Sens 7(10): pp. 4231–4242

    Google Scholar 

  109. Wang Q, Shi W, Atkinson PM, Li Z (2015) Land cover change detection at subpixel resolution with a hopfield neural network. IEEE J Sel Top Appl Earth Obs Remote Sens 8(3):1339–1352

    Google Scholar 

  110. Li H, Li M (2015) SAR image change detection based on hybrid conditional random field. IEEE Geosci Remote Sens Lett 12(4):910–914

    Google Scholar 

  111. Mahdipour E, Dadkhah C (2014) Automatic fire detection based on soft computing techniques: review from 2000 to 2010. Artif Intell Rev 42:895–934

    Google Scholar 

  112. Lu D, Mausel P, BrondiZio E, Moran E (2004) Change detection techniques. Int J Remote Sens 25(12):2365–2407

    Google Scholar 

  113. Gong M, Zhou Z, Ma J (2012) Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering. IEEE Trans Image Process 21(4):2141–2151

    MathSciNet  MATH  Google Scholar 

  114. Jia L, Li M, Zhang P, Wu Y, An L, Song W (2016) Remote-sensing image change detection with Fusion of multiple wavelet kernels. IEEE J Sel Top Appl Earth Obs Remote Sens. doi:10.1109/JSTARS.2015.2508043

    Google Scholar 

  115. Hinke TH, Rushing J, Ranganath H, Graves SJ (2000) Techniques and experience in mining remotely sensed satellite date. Artif Intell Rev 14:503–531

    MATH  Google Scholar 

  116. Ding S, Jia H, Chen J, ** F (2014) Granular neural networks. Artif Intell Rev 41:373–384

    Google Scholar 

  117. Hu H, Ban Y (2014) Unsupervised change detection in multitemporal SAR images over large urban areas. IEEE J Sel Top Appl Earth Obs Remote Sens 7(8):3248–3261

    Google Scholar 

  118. Melgani F, Bazi Y (2006) Markovian fusion approach to robust unsupervised change detection in remotely sensed imagery. IEEE Geosci Remote Sens Lett 3(4):457–461

    Google Scholar 

  119. Mishra NS, Ghosh S, Ghosh A (2012) Fuzzy clustering algorithms incorporating local information for change detection in remotely sensed images. Appl Soft Comput 12:2683–2692

    Google Scholar 

  120. Wang F, Wu Y, Zhang Q, Zhang P, Li M, Lu Y (2013) Unsupervised change detection on SAR images using triplet Markov field model. IEEE Geosci Remote Sens Lett 10(4):697–701

    Google Scholar 

  121. Hussain M, Chen D, Cheng A, Wei H, Stanley D (2013) Change detection from remotely sensed images: from pixel-based to object-based approaches. ISPRS J Photogram Remote Sens 80:8091–8106

    Google Scholar 

  122. Rawat JS, Kumar M (2015) Monitoring land use/cover change using remote sensing and GIS techniques: a case study of Hawalbagh block, district Almora, Uttarakhand, India. Egypt J Remote Sens Space Sci 18:77–84

    Google Scholar 

  123. Liu S, Bruzzone L, Bovolo F, Du P (2015) Hierarchical unsupervised change detection in multitemporal hyperspectral images. IEEE Geosci Remote Sens Lett 53(1):244–260

    Google Scholar 

  124. Correa YTS, Bovolo F, Bruzzone L (2014) Change detection in very high resolution multi sensor optical images. Proceedings of SPIE. Int Soc Opt Eng. doi:10.1117/12.2068171

    Google Scholar 

  125. Singh KK, Khandelwal P, Mehrotra A (2013) An unsupervised change detection method for satellite images using PCA and SOM neural network. Book-adv Energy Aware Comput Commun Sys. https://www.researchgate.net/publication/260225689

  126. Zhong Y, Liu W, Zhao J, Zhang L (2015) Change detection based on pulse-coupled neural networks and the nmi feature for high spatial resolution remote sensing imagery. IEEE Geosci Remote Sens Lett 12(3):537–541

    Google Scholar 

  127. Butt A, Shabbir R, Ahmad SS, Aziz N (2015) Land use change map** and analysis using Remote Sensing and GIS: A case study of Simly watershed, Islamabad, Pakistan. Egypt J Remote Sens Space Sci 18:251–259

    Google Scholar 

  128. Ganasria BP, Dwarakish GS (2015) Study of land use/land cover dynamics through classification algorithms for Harangi catchment area, Karnataka State, India. Aquat Proced 4:1413–1420

    Google Scholar 

  129. Torahi AA, Rai SC (2011) Land cover classification and forest change analysis, using satellite imagery—a case study in Dehdez area of Zagros mountain in Iran. J Geogr Inf Sys 3:1–11

    Google Scholar 

  130. Neagoe VE, Stoica RM, Ciurea AI, Bruzzone L, Bovolo F (2014) Concurrent self-organizing maps for supervised/unsupervised change detection in remote sensing images. IEEE J Sel Top Appl Earth Obs Remote Sens 7(8):3525–3533

    Google Scholar 

  131. Celik T (2009) Unsupervised change detection in satellite images using principal component analysis and K-means clustering. IEEE Geosci Remote Sens Lett 6(4):772–776

    Google Scholar 

  132. kusetogullari H, Yavariabdi A, Celik T (2015) Unsupervised change detection in multitemporal multispectral satellite images using parallel particle swarm optimization. IEEE J Sel Top Appl Earth Obs Remote Sens 8(5):2151–2164

    Google Scholar 

  133. Ghosh S, Bruzzone L, Patra S, Bovolo F, Ghosh A (2007) A context-sensitive technique for unsupervised change detection based on Hopfield-type neural networks. IEEE J Sel Top Appl Earth Obs Remote Sens 45(3):778–789

    Google Scholar 

  134. Bovolo F, Bruzzone L, Marconcini M (2008) A novel approach to unsupervised change detection based on a semisupervised SVM and a similarity measure. IEEE J Sel Top Appl Earth Obs Remote Sens 46(7):2070–2082

    Google Scholar 

  135. Bruzzone L, Prieto DF (2002) An adaptive semi parametric and context-based approach to unsupervised change detection in multitemporal remote-sensing images. IEEE Trans Image Process 11(4):452–466

    Google Scholar 

  136. Bazi Y, Bruzzone L, Melgani F (2005) An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images. IEEE J Sel Top Appl Earth Obs Remote Sens 43(4):874–887

    Google Scholar 

  137. Moser G, Angiati E, Serpico SB (2011) Multiscale unsupervised change detection on optical images by Markov random fields and wavelets. IEEE J Sel Top Appl Earth Obs Remote Sens 8(4):725–729

    Google Scholar 

  138. Celik T, Ma KK (2010) Unsupervised change detection for satellite images using dual-tree complex wavelet transform. IEEE J Sel Top Appl Earth Obs Remote Sens 48(3):1199–1210

    Google Scholar 

  139. Mehrotra A, Singh KK, Khandelwal P (2010) Unsupervised change detection in multispectral remotely sensed imagery with level set methods. IEEE J Sel Top Appl Earth Obs Remote Sens 48(8):3178–3187

    Google Scholar 

  140. Zhou L, Cao G, Li Y, Shang Y (2016) Change detection based on conditional random field with region connection constraints in high-resolution remote sensing images. IEEE J Sel Top Appl Earth Obs Remote Sens 9:3478–3488

    Google Scholar 

  141. Li HC, Celik T, Longbotham N, Emery WJ (2015) Gabor feature based unsupervised change detection of multitemporal SAR images based on two-level clustering. IEEE Geosci Remote Sens Lett 12(12):2458–2462

    Google Scholar 

  142. Zhuang H, Deng K, Fan H, Yu M (2016) Strategies combining spectral angle mapper and change vector analysis to unsupervised change detection in multispectral images. IEEE Geosci Remote Sens Lett 13(5):681–685

    Google Scholar 

  143. Hao M, Shi W, Zhang H, Li C (2014) Unsupervised change detection with expectation-maximization-based level set. IEEE Geosci Remote Sens Lett 11(1):210–214

    Google Scholar 

  144. Pacifici F, Frate FD (2010) Automatic change detection in very high resolution images with pulse-coupled neural networks. IEEE Geosci Remote Sens Lett 7(1):58–62

    Google Scholar 

  145. Ma J, Gong M, Zhou Z (2012) Wavelet fusion on ratio images for change detection in SAR images. IEEE Geosci Remote Sens Lett 9(6):1122–1126

    Google Scholar 

  146. Jia L, Li M, Zhang P, Wu Y, Zhu H (2016) SAR image change detection based on multiple kernel K-means clustering with local-neighbourhood information. IEEE Geosci Remote Sens Lett 13(6):856–860

    Google Scholar 

  147. Wang Y, Dai LDA (2016) Unsupervised SAR image change detection based on SIFT keypoints and region information. IEEE Geosci Remote Sens Lett 13(7):931–935

    Google Scholar 

  148. Turgaycelik (2010) Change detection in satellite images using a genetic algorithm approach. IEEE Geosci Remote Sens Lett 7(2):386–390

    Google Scholar 

  149. Yetgin Z (2012) Unsupervised change detection of satellite images using local gradual descent. IEEE Geosci Remote Sens Lett 50(5):1919–1929

    Google Scholar 

  150. Hou B, Wei Q, Zheng Y, Wang S (2014) Unsupervised change detection in sar image based on gauss-log ratio image fusion and compressed projection. IEEE J Sel Top Appl Earth Obs Remote Sens 7(8):3297–3317

    Google Scholar 

  151. De Falco I, Della Cioppa A, Maisto D, Tarantino E (2008) Differential evolution as a viable tool for satellite image registration. Appl Soft Comput 8:1453–1462

    MATH  Google Scholar 

  152. Li H, Gong M, Wang Q, Liu J, Su L (2015) A multiobjective fuzzy clustering method for change detection in SAR images. Appl Soft Comput 46(2016):767–777

    Google Scholar 

  153. Mselmi B, Rabah ZB, Farah IR, Solaiman B (2014) Multi-resolution and multi-spectral analysis for satellite images classification with fuzzy spatial relationships. In: 2014 International image processing applications and systems conference. IEEE, New Jersey, pp. 1–6

    Google Scholar 

  154. Dixit A, Agarwal MS (2013) Comparison of various models and optimum range of its parameters used in SVM classification of digital satellite image. In: 2013 IEEE second international conference on image information processing. IEEE, New Jersey, pp. 363–368

    Google Scholar 

  155. Momani BA, Morrow P, McClean S (2007) Knowledge-based semi-supervised satellite image classification. In: 2007 9th International symposium on signal processing and its applications, ISSPA. IEEE, New Jersey

    Google Scholar 

  156. Juneja M, Walia E, Sandhu PS, Mohana R (2009) Implementation and Comparative Analysis of Rough Set, Artificial Neural Network (ANN) and Fuzzy Rough classifiers for Satellite Image Classification. In: 2009 International conference on intelligent agent & multi-agent systems, IAMA. IEEE, New Jersey

    Google Scholar 

  157. Mahmon NA, Ya’acob N (2014) A review on classification of satellite image using artificial neural network (ANN). 2014 IEEE 5th control and system graduate research colloquium, UiTM, Shah Alam, pp. 153–157

    Google Scholar 

  158. Patki PS, Kelkar VV (2013) Support vector machine and various methods of multi-spectral satellite image classification. 2013 International Conference on Advances in Technology and Engineering (ICATE), Banglore, pp. 1–5

    Google Scholar 

  159. Saurabh A, Raghu BV, Agrawal A (2004) CORSISCA: classification of remotely sensed images—a soft computing approach. Indian Institute of technology, Kharagpur, pp. 283–287

  160. Bekkari A, Idbraim S, Housni K, Mammass D, Chahir Y (2010) Classification of high resolution urban satellite images combining SVM and graph cuts. In: 2010 5th international symposium on I/V communications and mobile network (ISVC). IEEE, New Jersey

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Thyagharajan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thyagharajan, K.K., Vignesh, T. Soft Computing Techniques for Land Use and Land Cover Monitoring with Multispectral Remote Sensing Images: A Review. Arch Computat Methods Eng 26, 275–301 (2019). https://doi.org/10.1007/s11831-017-9239-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-017-9239-y

Navigation