Log in

Response of P450 gene of Frankliniella occidentalis (Thysanoptera: Thripidae) in succession adaptation to broad bean plant

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

In insects, cytochrome P450 (CYP), an important detoxification enzyme, is crucial in host plant adaptation. In this study, we discerned the alterations in the expression of CYP genes in western flower thrips (WFT; Frankliniella occidentalis) in develo** adaptation to broad bean plants. The alterations in the expression levels of CYP4 and CYP6 were examined after transferring the WFT reared on kidney bean pods (control) to broad bean plants and rearing for three generations (treatments). The findings showed that CYP6-2 in 2nd instar nymphs, CYP4-3, and CYP6-2 in adults were significantly upregulated in the F1 generation, while other genes did not show significant changes. Furthermore, in the F2 2nd instar nymphs, most CYP genes were highly expressed, whereas, in the F2 and F3 generations, four CYP4 and two CYP6 genes in the 2nd instar nymphs and five CYP4 and three CYP6 genes in the adults showed a similar level of expressions. These results revealed that expression of P450 genes in WFT was related to their developmental stages and adaptive generations. Overall, the study provides insights into the understanding of the evolution of host adaptability of WFT and could assist in the integrated control of WFT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig.1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  • Atakan E (2010) Influence of weedy field margins on abundance patterns of the predatory bugs Orius spp. and their prey, the western flower thrips (Frankliniella occidentalis), on faba bean. Phytoparasitica 38(4):313–325

    Article  Google Scholar 

  • Berenbaum M, Calla B (2021) Editorial overview: cytochrome P450s in plant-insect interactions: new insights on gut reactions. Curr Opin Insect Sci 43:vi–ix

    Article  PubMed  Google Scholar 

  • Calla B (2020) Signatures of selection and evolutionary relevance of cytochrome P450s in plant-insect interactions. Curr Opin Insect Sci 43:92–96

    Article  PubMed  Google Scholar 

  • Calla B, Wu WY, Dean CAE, Schuler MA, Berenbaum MR (2020) Substrate-specificity of cytochrome P450-mediated detoxification as an evolutionary strategy for specialization on furanocoumarin-containing hostplants: CYP6AE89 in parsnip webworms. Insect Mol Biol 29(1):112–123

    Article  CAS  PubMed  Google Scholar 

  • Crépon K, Marget P, Peyronnet C, Carrouée B, Arese P, Duc G (2010) Nutritional value of faba bean (Vicia faba L.) seeds for feed and food. Field Crops Res 115(3):329–339

    Article  Google Scholar 

  • Cui S, Wang L, Ma L, Geng X (2016) P450-mediated detoxification of botanicals in insects. Phytoparasitica 44(5):585–599

    Article  CAS  Google Scholar 

  • Dong HG, **e ZJ, Du YZ, Wang JJ (2015) Cloning and mRNA expression analysis of cDNA fragments of cytochrome P450 genes in Frankliniella occidentalis. J Environ Entomol 37(6):1188–1194

    Google Scholar 

  • Douglas AE (2018) Strategies for enhanced crop resistance to insect pests. Annu Rev Plant Biol 69(1):637–660

    Article  CAS  PubMed  Google Scholar 

  • Erb M, Reymond P (2019) Molecular interactions between plants and insect herbivores. Annu Rev Plant Biol 70(1):527–557

    Article  CAS  PubMed  Google Scholar 

  • Feyereisen R (2006) Evolution of insect P450. Biochem Soc Trans 34(Pt 6):1252

    Article  CAS  PubMed  Google Scholar 

  • Feyereisen R (2020) Origin and evolution of the CYP4G subfamily in insects, cytochrome P450 enzymes involved in cuticular hydrocarbon synthesis. Mol Phylogenet Evol 143:106695

    Article  CAS  PubMed  Google Scholar 

  • He Z, Guo JF, Reitz SR, Lei ZR, Wu SY (2020) A global invasion by the thrip, Frankliniella occidentalis: current virus vector status and its management. Insect Sci 27(4):626–645

    Article  PubMed  Google Scholar 

  • Heidel-Fischer HM, Vogel H (2015) Molecular mechanisms of insect adaptation to plant secondary compounds. Curr Opin Insect Sci 8:8–14

    Article  PubMed  Google Scholar 

  • Huang H, Cui J, Guo Y, Sun J, Hong X (2018) Roles of LsCYP4DE1 in wheat adaptation and ethiprole tolerance in Laodelphax striatellus. Insect Biochem Mol Biol 101:14–23

    Article  CAS  PubMed  Google Scholar 

  • Ji R, Lei J, Chen IW, Sang W, Yang S, Fang J, Zhu Salzman K (2021) Cytochrome P450s CYP380C6 and CYP380C9 in green peach aphid facilitate its adaptation to indole glucosinolate-mediated plant defense. Pest Manag Sci 77(1):148–158

    Article  CAS  PubMed  Google Scholar 

  • ** M, Liao C, Fu X, Holdbrook R, Wu K, **ao Y (2019) Adaptive regulation of detoxification enzymes in Helicoverpa armigera to different host plants. Insect Mol Biol 28(5):628–636

    Article  CAS  PubMed  Google Scholar 

  • Kirk WDJ, Terry LI (2003) The spread of the western flower thrips Frankliniella occidentalis (Pergande). Agric for Entomol 5(4):301–310

    Article  Google Scholar 

  • Li W, Petersen RA, Schuler MA, Berenbaum MR (2002) CYP6B cytochrome P450 monooxygenases from Papilio canadensis and Papilio glaucus: potential contributions of sequence divergence to host plant associations. Insect Mol Biol 11(6):543–551

    Article  CAS  PubMed  Google Scholar 

  • Li W, Zangerl AR, Schuler MA, Berenbaum MR (2004) Characterization and evolution of furanocoumarin-inducible cytochrome P450s in the parsnip webworm. Depressaria Pastinacella Insect Mol Biol 13(6):603–613

    Article  CAS  PubMed  Google Scholar 

  • Li X, Schuler MA, Berenbaum MR (2007) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 52(1):231–253

    Article  PubMed  Google Scholar 

  • Li JZ, Zhi JR, Gai HT (2011) Effects of host plants and temperature on Frankliniella occidentalis growth and development. Chin J Ecol 30:558–563

    CAS  Google Scholar 

  • Li F, Ma K, Chen X, Zhou JJ, Gao X (2019) The regulation of three new members of the cytochrome P450 CYP6 family and their promoters in the cotton aphid Aphis gossypii by plant allelochemicals. Pest Manag Sci 75(1):152–159

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Hou X, Yue W, **e W, Zhang T, Zhi J (2020a) Response of protective enzymes in western flower thrips (Thysanoptera: Thripidae) to two Leguminous plants. Environ Entomol 49(5):1191–1197

    Article  PubMed  Google Scholar 

  • Liu L, Zhi JR, Yue WB, **e W, Zhang T (2020b) The response of P450 genes in Frankliniella occidentalis in the succession adaptation to kidney bean plant. J Environ Entomol 42(2):426–433

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Mayer Labba I, Frøkiær H, Sandberg A (2021) Nutritional and antinutritional composition of fava bean (Vicia faba L., var minor) cultivars. Food Res Int 140:110038

    Article  CAS  PubMed  Google Scholar 

  • Mittapelly P, Bansal R, Michel A (2019) Differential expression of cytochrome P450 CYP6 genes in the brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae). J Econ Entomol 112(3):1403–1410

    Article  CAS  PubMed  Google Scholar 

  • Mouden S, Sarmiento KF, Klinkhamer PG, Leiss KA (2017) Integrated pest management in western flower thrips: past, present and future. Pest Manag Sci 73(5):813–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nauen R, Zimmer CT, Vontas J (2021) Heterologous expression of insect P450 enzymes that metabolize xenobiotics. Curr Opin Insect Sci 43:78–84

    Article  PubMed  Google Scholar 

  • Nelson DR (2018) Cytochrome P450 diversity in the tree of life. Biochim Biophys Acta (BBA)—Proteins Proteom 1866(1):141–154

    Article  CAS  Google Scholar 

  • Obregón-Molina G, Cesar-Ayala AK, López MF, Cano-Ramírez C, Zúñiga G (2015) Comparison of orthologous cytochrome P450 genes relative expression patterns in the bark beetles Dendroctonus rhizophagus and Dendroctonus valens (Curculionidae: Scolytinae) during host colonization. Insect Mol Biol 24(6):649–661

    Article  PubMed  Google Scholar 

  • Ogada PA, Poehling H (2015) Sex-specific influences of Frankliniella occidentalis (western flower thrips) in the transmission of tomato spotted wilt virus (Tospovirus). J Plant Dis Prot 122(5–6):264–274

    Article  Google Scholar 

  • Peng T, Pan Y, Gao X, ** J, Zhang L, Yang C, Bi R, Yang S, **n X, Shang Q (2016) Cytochrome P450 CYP6DA2 regulated bycap ‘n’collar isoform C (CncC) is associated with gossypol tolerance in Aphis gossypii Glover. Insect Mol Biol 25(4):450–459

    Article  CAS  PubMed  Google Scholar 

  • Razi S, Laamari M (2013) Thysanoptera survey on Vicia faba (broad bean) in the arid Biskra region of Algeria. Agric Biol J N Am 4(3):268–274

    Article  Google Scholar 

  • Reitz SR (2009) Biology and ecology of the western flower thrips (Thysanoptera: Thripidae): The making of a pest. Fla Entomol 92(1):7–13

    Article  Google Scholar 

  • Reitz SR, Gao Y, Kirk WDJ, Hoddle MS, Leiss KA, Funderburk JE (2020) Invasion biology, ecology, and management of western flower thrips. Annu Rev Entomol 65(1):17–37

    Article  CAS  PubMed  Google Scholar 

  • Scott JG, Wen Z (2001) Cytochromes P450 of insects: the tip of the iceberg. Pest Manag Sci 57(10):958–967

    Article  CAS  PubMed  Google Scholar 

  • Simon JC, D’Alencon E, Guy E, Jacquin-Joly E, Jaquiery J, Nouhaud P, Peccoud J, Sugio A, Streiff R (2015) Genomics of adaptation to host-plants in herbivorous insects. Brief Funct Genomics 14(6):413–423

    Article  CAS  PubMed  Google Scholar 

  • Smith HA, Macvean CM, Bailey AC, Benavente JM (2013) Faba beans are not a good trap crop for thrips (Thysanoptera: Thripidae) in snow peas in Guatemala. Florida Entomologist 96(4):1603–1605

    Article  Google Scholar 

  • Tao X, Xue X, Huang Y, Chen X, Mao Y (2012) Gossypol-enhanced P450 gene pool contributes to cotton bollworm tolerance to a pyrethroid insecticide. Mol Ecol 21(17):4371–4385

    Article  CAS  PubMed  Google Scholar 

  • Tian T, Zhi JR, Mou F (2014) Effects of healthy and pest damaged kidney beans on development and fecundity of Tetranychus urticae and Frankliniella occidentalis. J Plant Prot 41(1):12–18

    Google Scholar 

  • Vandenhole M, Dermauw W, Van Leeuwen T (2020) Short term transcriptional responses of P450s to phytochemicals in insects and mites. Curr Opin Insect Sci 43:117–127

    Article  PubMed  Google Scholar 

  • Wang D, Shi X, Liu D, Yang Y, Shang Z (2020) Transcriptome profiling revealed potentially critical roles for digestion and defense-related genes in insects’ use of resistant host plants: a case study with Sitobion Avenae. Insects 11(2):90

    Article  PubMed  PubMed Central  Google Scholar 

  • War AR, Taggar GK, Hussain B, Taggar MS, Nair RM, Sharma HC (2018) Plant defence against herbivory and insect adaptations. AoB Plants 10:ply037

    Google Scholar 

  • White RE, Coon MJ (1980) Oxygen activation by cytochrome P-450. Annu Rev Biochem 49:315–356

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Ding C, Chen S, Wu X, Zhang L, Song Y, Li W, Zeng R (2021) Exposure of Helicoverpa armigera larvae to plant volatile organic compounds induces cytochrome P450 monooxygenases and enhances larval tolerance to the insecticide methomyl. Insects 12(3):238

    Article  PubMed  PubMed Central  Google Scholar 

  • ** L, Liu D, Ma L, Zhang Y, Sheng R, Zhang S, Dang X, Li G, Miao Y, Jiang J (2019) Expression patterns, molecular characterization, and response to host stress of CYP genes from Phenacoccus solenopsis (Hemiptera: Pseudococcidae). Insects 10(9):264

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu X, Li X, Liu Z, Wang F, Fan L, Wu C, Yao Y (2021) Knockdown of CYP301B1 and CYP6AX1v2 increases the susceptibility of the brown planthopper to beta-asarone, a potential plant-derived insecticide. Int J Biol Macromol 171:150–157

    Article  CAS  PubMed  Google Scholar 

  • Yuan C, Zhi J, Cao Y, Ma H (2011) Selectivity of Frankliniella occidentalis to vegetable hosts. Acta Ecol Sin 31(6):1720–1726

    Google Scholar 

  • Zhang Q, Yang F, Tong H, Hu Y, Zhang X, Tian T, Zhang Y, Su Q (2021a) Plant flavonoids enhance the tolerance to thiamethoxam and flupyradifurone in whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). Pestic Biochem Physiol 171:104744

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Gao S, Xue S, An S, Zhang K (2021b) Disruption of the cytochrome P450 CYP6BQ7 gene reduces tolerance to plant toxicants in the red flour beetle, Tribolium castaneum. Int J Biol Macromol 172:263–269

    Article  PubMed  Google Scholar 

  • Zheng YT, Li HB, Lu MX, Du YZ (2014) Evaluation and validation of reference genes for qRT-PCR normalization in Frankliniella occidentalis (Thysanoptera: Thripidae). PLoS ONE 9(10):e111369

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhi JR, Li JZ, Gai HT (2010) Life table for experimental population of Frankliniella occidentalis feeding on leguminous vegetables. Chin Bull Entomol 47:313–317

    Google Scholar 

  • Zhi JR, Tian T, Wen J, Liu Y (2016) Effects of kidney bean damaged by Frankliniella occidentalis (Thysanoptera: Thripidae) or Tetranychus urticae (Acari: Tetranychidae) on the activities of protective and detoxification enzymes in the other subsequent herbivore of both. Acta Entomol Sin 59(7):707–715

    Google Scholar 

  • Zhi J, Liu L, Hou X, **e W, Yue W, Zeng G (2021) Role of digestive enzymes in the adaptation of Frankliniella occidentalis to preferred and less-preferred host plants. Entomol Exp Appl 169:688–700

    Article  CAS  Google Scholar 

  • Zhou X, Song LW, Yang SY, Li JJ, Wang JJ, Zhang XH, Shen HM (2016) Analysis of detoxification enzyme genes in the multiple pesticide-resistant strain of Tetranychus urticae. Sci Agric Sin 49(9):1696–1704

    CAS  Google Scholar 

  • Zhu J (2017) Host switching affects the fitness and metabolism of Myzus persicae (Sulzer). MS Thesis, Northwest A&F University, Yangling, China.

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 31660516), Talent’s Platform of Guizhou (No. [2017] 5788), and the Guizhou International Science and Technology Cooperation Base (No. [2016] 5802).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junrui Zhi.

Ethics declarations

Conflict of interest

The authors reported no potential conflict of interest.

Additional information

Handling Editors: Yulin Gao and Ingeborg-Menzler-Hokkanen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Yue, W., **e, W. et al. Response of P450 gene of Frankliniella occidentalis (Thysanoptera: Thripidae) in succession adaptation to broad bean plant. Arthropod-Plant Interactions 18, 33–42 (2024). https://doi.org/10.1007/s11829-023-10015-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-023-10015-8

Keywords

Navigation