Log in

Application of hydrophobic deep eutectic solvent for the extraction of aromatic compounds from contaminated water

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Hydrophobic deep eutectic solvent (DES) was synthesized from TBAB and decanoic acid and used to study the extraction of aromatic hydrocarbon from contaminated water samples. DES was screened by selecting different ratios between the TBAB and decanoic acid. A ratio of 1: 2 was observed to be the best among others and was used for the desired application. Within the temperature range of 25–70 °C, physicochemical properties such as density (944–915 kg/m3), viscosity (1,636–179 mPa·s), conductivity (141–1,007 µS/cm), and pH (3.14–2.73) of the synthesized DES were determined. For the extraction study, benzene, toluene, and xylene (BTX)-doped water were used as a simulated contaminated water. Response surface methodology was employed in modeling and optimizing the effects of temperature, time, and solvent mass fraction on the extraction efficiency of the DES. Extraction efficiency of 68.1%, 70.84% and 77.73% for BTX, respectively, was recorded at optimum values of 25 °C, 60 min and 0.6 (solvent mass fraction). Extraction efficiency as high as 86.61%, 88.94%, and 92.71% for BTX, respectively, can be obtained within the design space. Effective regeneration and reuse of the DES after each extraction was carried out for five consecutive cycles; their results showed no significant decrease in their respective extraction efficiencies and recovery of the DES. This, therefore, improves the overall performance of hydrophobic DES for the extraction process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. E. Manoli and C. Samara, Trends Analyt. Chem., 18, 417 (1999).

    Article  CAS  Google Scholar 

  2. N. U. Benson, J. P. Essien, F. E. Asuquo and A. L. Eritobor, Environ. Monit. Assess., 186, 5519 (2014).

    Article  CAS  Google Scholar 

  3. T. Khezeli, A. Daneshfar and R. Sahraei, J. Chromatogr. A., 1425, 25 (2015).

    Article  CAS  Google Scholar 

  4. A. M. Taiwo, O. O. Olujimi, O. Bamgbose and T. A. Arowolo, Surface water monitoring in nigeria: Situational analysis and future management strategy, water quality monit. assess., InTech publications, London (2012).

    Google Scholar 

  5. K. Z. Kponee, A. Chiger, I. I. Kakulu, D. Vorhees and W. Heiger-Bernays, J. Environ. Health Sci. Eng., 14, 86 (2015).

    Google Scholar 

  6. L. F. Lima, J. I. R. De-Andrade, M. G. Da-Silva and M. G. Vieira, Ind. Eng. Chem. Res., 56, 6326 (2017).

    Article  CAS  Google Scholar 

  7. A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed and V. Tambyrajah, Chem. Commun., 1, 70 (2003).

    Article  Google Scholar 

  8. P. Makos, A. Przyjazny and G. Boczkaj, J. Chromatogr. A., 1570, 28 (2018).

    Article  CAS  Google Scholar 

  9. M. K. I. Hadj-Kali and M. Hayyan, J. Chem. Technol. Biotechnol., 93, 945 (2018).

    Article  Google Scholar 

  10. Gahiszka, Z. Migaszewski and J. Namiesnik, Trends Analyt. Chem., 50, 78 (2013).

    Article  Google Scholar 

  11. D.J. van Osch, L. F. Zubeir, A. van den Bruinhorst, M.A. Rocha and M. C. Kroon, J. Green Chem., 17, 4518 (2015).

    Article  CAS  Google Scholar 

  12. Florindo, L. Branco and I. Marrucho, Fluid Phase Equilib., 448, 135 (2017).

    Article  CAS  Google Scholar 

  13. M. Faraji, Microchem. J., 150, 104130 (2019).

    Article  CAS  Google Scholar 

  14. S. Garcia, M. Gil, J. Pis, F. Rubiera and C. Pevida, Int. J. Greenh. Gas Control, 12, 35 (2013).

    Article  CAS  Google Scholar 

  15. A. K. Dwamena, J. Sep. Sci., 6, 9 (2019).

    CAS  Google Scholar 

  16. B. Socas-Rodriguez, A. Santana-Mayor, A. V. Herrera-Herrerra and M. A. Rodriguez-Delgado, Green Sustain. Process Chem. Environ. Eng. Sci., 5, 123 (2020).

    Article  Google Scholar 

  17. Z.S. Gano, F. S. Mjalli, T. Al-Wahaibi, Y. Al-Wahaibi and I. M. AlNashef, Chem. Eng. Process, 93, 10 (2015).

    Article  CAS  Google Scholar 

  18. C. Montgomery and G. C. Runger, Applied statistics and probability for engineers, John Wiley & Sons Publications, New Jersey (2010).

    Google Scholar 

  19. B. Jibril, F. Mjalli, J. Naser and Z. Gano, J. Mol. Liq., 199, 462 (2014).

    Article  CAS  Google Scholar 

  20. S. M. Yousefi, F. Shemirani and S. A. Ghorbanian, J. Chromatographia, 81, 1201 (2018).

    Article  CAS  Google Scholar 

  21. J. G. P. van Osch, C. H. J. T. Dietz, J. van Spronsen, M. C. Kroon, F. Gallucci, M. V. S. Annaland and R. Tuinier, ACS. Sustain. Chem. Eng., 7, 2933 (2019).

    Article  CAS  Google Scholar 

  22. H. Ghaedi, M. Ayoub, S. Sufian, S. M. Hailegiorgis, G. Murshid, S. Farrukh and S. N. Khan, Thermochim. Acta., 657, 123 (2017).

    Article  CAS  Google Scholar 

  23. A. Hayyan, F. S. Mjalli, I. M. AlNashef, T. Al-Wahaibi, Y. M. Al-Wahaibi and M. A. Hashim, Thermochim. Acta., 541, 70 (2012).

    Article  CAS  Google Scholar 

  24. X. Li and K. H. Row, J. Sep. Sci., 39, 3505 (2016).

    Article  CAS  Google Scholar 

  25. L. Zhao and H. K. Lee, J. Chromatogr. A., 919, 381 (2001).

    Article  CAS  Google Scholar 

  26. D. Ge, Y. Zhang, Y. Dai and S. Yang, J. Sep. Sci., 41, 1635 (2018).

    Article  CAS  Google Scholar 

  27. T. Li, Y. Song, J. Xu and J. Fan, Talanta, 195, 298 (2019).

    Article  CAS  Google Scholar 

  28. K. S. Kim, J. Y. Lee, S. J. Lee, T. K. Ha and D. H. Kim, J. Am. Chem. Soc., 116, 7399 (1994).

    Article  CAS  Google Scholar 

  29. J. Gao, L. W. Chou and A. Auerbach, Biophys. J., 65, 43 (1993).

    Article  CAS  Google Scholar 

  30. A. Orabi and G. Lamoureux, J. Phys. Chem. B., 122, 2251 (2018).

    Article  CAS  Google Scholar 

  31. D. A. Dougherty and D. A. Stauffer, J. Sci., 250, 1558 (1990).

    CAS  Google Scholar 

  32. L. Metcalf, Waste water engineering: Treatment and reuse, Metcalf and Eddy Inc. (2003).

  33. W. H. Organization, A compendium of standards for waste water reuse in the Eastern Mediterranean Region (2006).

Download references

Acknowledgements

The authors appreciate the National Research Institute for Chemical Technology (NARICT), Zaria, Nigeria and the Department of Chemical Engineering, Ahmadu University, Zaria, Nigeria for financial and technical supports rendered in carrying out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaharaddeen Sani Gano.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakubu, A., Gano, Z.S., Ahmed, O.U. et al. Application of hydrophobic deep eutectic solvent for the extraction of aromatic compounds from contaminated water. Korean J. Chem. Eng. 39, 1299–1306 (2022). https://doi.org/10.1007/s11814-021-0994-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0994-y

Keywords

Navigation