Log in

Alcoholic fermentation with high sugar and cell concentration at moderate temperatures using flocculant yeasts

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This paper studied bioethanol production at very high gravity (VHG) conditions using flocculent Saccharomyces cerevisiae, evaluating the response yield, ethanol concentration, productivity, and residual sugar through a central composite design (CCD). This CCD was evaluated at 12 and 24 h fermentation times. In the CCD evaluated for 12 h of fermentation, the best condition for alcoholic fermentation was 27 °C, 260 g/L substrate concentration and a 30% v/v cell concentration; a maximum overall desirability of 0.937 was achieved. For CCD at 24 h of fermentation, the best condition was 27 °C, 300 g/L substrate concentration, and a 26% v/v cell concentration. The desirability achieved was 0.811. These conditions allowed us to verify, experimentally, that the CCD models described the fermentation behavior well. VHG alcoholic fermentation in fed-batch with the reuse of cells without chemical treatment was performed using the optimum conditions obtained from the desirability function (27 °C, 300 g/L, 26% v/v). This resulted in favorable alcohol content 132.90 g/L in comparison to the conventional fermentation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

nviablecells :

number of viable cells [-]

ntotalcells :

total number cells [-]

TRS:

total reducing sugar concentration [g/L]

C ethanol :

fermentation final ethanol concentration [g/L]

C TRSi :

initial total reducing sugar concentration [g/L]

Pr:

ethanol productivity [g/L·h]

X1 :

temperature [°C]

X2 :

initial concentration of total reducing sugar [g/L]

X3 :

initial reactor cell concentration [%v/v]

Y1 :

ethanolyield [%]

Y2 :

ethanol concentration produced [g/L]

Y3 :

ethanol productivity [g/L·h]

Y4 :

residual sugar concentration [g/L]

t:

final fermentation time [h]

References

  1. E. Bertrand, L. P. S. Vandenberghe, C. R. Soccol, J. C. Sigoillot and C. Faulds, in Green fuels technology: Biofuels in first generation bioethanol, C. R. Soccol, S. K. Brar, C. Faulds and L. P. Ramos Eds., eBook (2016).

  2. UNICA, Unica returns China with positive balance, https://www.unica.com.br/noticias/unica-retorna-da-china-com-saldopositivo (2019).

  3. O. Deesuth, P. Laopaiboon, P. Klanrit and L. Laopaiboon, Ind. Crop. Prod., 74, 102 (2015).

    Article  Google Scholar 

  4. E. C. Rivera, C. K. Yamakawa, M. B. W. Saad, D. I. P. Atala, W. B. Ambrosio, A. Bonomi, J. Junior and C. E. V. Rossell, Biochem. Eng. J., 119, 42 (2017).

    Article  Google Scholar 

  5. C. Laluce, J. O. Tognolli, K. F. de Oliveira, C. S. Souza and M. R. Morais, Appl. Microbiol. Biotechnol., 83, 627 (2009).

    Article  CAS  Google Scholar 

  6. M. L. Cruz, M. M. de Resende and E. J. Ribeiro, Chem. Eng. Commun., 205, 846 (2018).

    Article  CAS  Google Scholar 

  7. N. S. Hidzir, A. Som and Z. Abdullah, Ethanol Production via Direct Hydration of Ethylene: Ethanol Production via Direct Hydration of Ethylene: A review in International Conference on Global Sustainability and Chemical Engineering (ICGSE) (2014).

  8. J. S. Rokem and C. L. Greenblatt, JSM Microbiol., 3, 1023 (2015).

    Google Scholar 

  9. Y. Vasconcelos, Fermentação vantajosa, uso de novas linhagens de levedura pode reduzir custo de produção das usinas de açúcar e álcool in revista Fapesp, 135 (2007).

  10. G. Choi, H. Um, H. Kang, Y. Kim, M. Kim and Y. Kim, Biomass Bioenergy, 34, 1232 (2010).

    Article  CAS  Google Scholar 

  11. T. F. Pacheco, W. G. de Morais Júnior, C. Z. Guidini, L D. S. Marquez, V. L. Cardoso, M. M. de Resende and E. J. Ribeiro, Chem. Eng. Technol., 38, 345 (2015).

    Article  CAS  Google Scholar 

  12. U. A. Lima, E. Aquarone, W. Borzani and W. Schimidell, Biotecnologia industrial, Edgard Blucher, São Paulo (2001).

    Google Scholar 

  13. C. D. Pimenta, M. B. Silva, V. A. P. Salomon, R. B. Penteado and F. M. Gomes, Production., 25, 598 (2015).

    Article  Google Scholar 

  14. P. Jones, R. P. Pamment and N. Greenfield, Biochemistry, 16, 42 (1981).

    CAS  Google Scholar 

  15. C. Z. Guidini, L. D. S. Marquez, H. D. A. Silva, M. M. de Resende, V. L. Cardoso and E. J. Ribeiro, Appl. Biochem. Biotechnol., 172, 1623 (2014).

    Article  CAS  Google Scholar 

  16. L. D. Santos, M. Del, B. Sousa, C. Z. Guidini, M. M. de Resende, V. L. Cardoso and E. J. Ribeiro, Process Biochem., 50, 1725 (2015).

    Article  CAS  Google Scholar 

  17. A. E. Wheals, L. C. Basso, D. M. G. Alves and H. V. Amorim, Trends Biotechnol., 17, 482 (1999).

    Article  CAS  Google Scholar 

  18. J. Santos, M. J. Sousa, H. Cardoso, J. Inácio, S. Silva, I. Spencer-Martins and C. Leão, Microbiology, 154, 422 (2008).

    Article  CAS  Google Scholar 

  19. F. J. T. González J. A. Narváez-Zapata, V. E. López-y-López and C. P. L. Corona, LWT — Food Sci. Technol., 67, 1 (2016).

    Article  Google Scholar 

  20. N. Phukoetphim, N. Khongsay, P. Laopaiboon and L. Laopaiboon, Chin. J. Chem. Eng., 27, 1651 (2019).

    Article  CAS  Google Scholar 

  21. B. Monteiro, P. Ferraz, M. Barroca, S. H. Cruz, T. Collins and C. Lucas, Biotechnol. Biofuels, 18, 251 (2018).

    Article  Google Scholar 

  22. C. K. Yamakawa, D. I. P. Atala, W. B. Ambrosio, J. N. Junior and C. E. V. Rossell, Zuckerindustrie, 4, 212 (2017).

    Google Scholar 

Download references

Acknowledgements

The authors thank CAPES, CNPq and FAPEMIG Brazil for financial support. The authors also thank the Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA) for donating the S. cerevisiae strain with flocculant characteristics (C2/00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Maria de Resende.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandão, A.C.T., de Resende, M.M. & Ribeiro, E.J. Alcoholic fermentation with high sugar and cell concentration at moderate temperatures using flocculant yeasts. Korean J. Chem. Eng. 37, 1717–1725 (2020). https://doi.org/10.1007/s11814-020-0589-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0589-z

Keywords

Navigation