Log in

Comparative photocatalytic behavior of photocatalysts (TiO2, SiC, Bi2O3, ZnO) for transformation of glycerol to value added compounds

  • Material (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Four types of semiconductors were used as photocatalyst to convert glycerol to other value added compounds at identical testing condition in the presence of H2O2 as the electron acceptor. The results demonstrated that the band gap energy affected the photocatalytic activity of glycerol than the crystallite size and textural property of the utilized photocatalyst. The SiC, Bi2O3 and ZnO achieved almost complete glycerol conversion at 8 h of reaction time, which was significantly higher than that of TiO2. Similar types of products, including dihydroxyacetone, glyceraldehyde, glyceric acid, glycolic acid and formic acid, were generated via all explored photocatalysts. Interestingly, one additional compound known as glyoxylic acid, an important intermediate of organic chemicals, used in medicine, spices, pesticides, paint, paper and food, was produced via Bi2O3. The reaction mechanism and the pathways of photocatalytic conversion of glycerol via Bi2O3 were proposed. Finally, the reusability of Bi2O3 photocatalyst was explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Sadanandam, K. Lalitha, V. D. Kumari, M. V. Shankar and M. Subrahmanyam, Int. J. Hydrogen Energy, 38, 9655 (2013).

    Article  CAS  Google Scholar 

  2. M. Stelmachowski, M. Marchwicka, E. Grabowska and M. Diak, J. Adv. Oxidation Technologies, 17, 167 (2014).

    Google Scholar 

  3. A. Markowska-Szczupak, P. Rokicka, K. Wang, M. Endo, A. Morawski and E. Kowalska, Catalysts, 8, 316 (2018).

    Article  CAS  Google Scholar 

  4. K. Ouyang, K. Dai, S. L. Walker, Q. Huang, X. Yin and P. Cai, Scientific Reports, 6, 25702 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. A. Rahmani, M. Samarghandi, M. Samadi and F. Nazemi, J. Res. Health Sci, 9, 1 (2009).

    CAS  PubMed  Google Scholar 

  6. M. I. Badawy, M. Y. Ghaly and M. E. Ali, Desalination, 267, 250 (2011).

    Article  CAS  Google Scholar 

  7. F. H. Hussein and T. A. Abass, Int. J. Chem. Sci, 8, 1353 (2010).

    CAS  Google Scholar 

  8. S. Lodha, A. Jain and P. B. Punjabi, Arab. J. Chem., 4, 383 (2011).

    Article  CAS  Google Scholar 

  9. Q. Zhang, D. D. Zheng, L. S. Xu and C.-T. Chang, Catal. Today, 274, 8 (2016).

    Article  CAS  Google Scholar 

  10. N. A. Barakat, E. Ahmed, M. T. Amen, M. A. Abdelkareem and A. Farghali, Mater. Lett, 210, 317 (2018).

    Article  CAS  Google Scholar 

  11. Y. H. Li, Y. Wang, L. R. Zheng, H. J. Zhao, H. G. Yang and C. Li, Appl. Catal. B: Environ, 209, 247 (2017).

    Article  CAS  Google Scholar 

  12. J. Luan and J. Chen, Materials, 5, 2423 (2012).

    Article  CAS  PubMed Central  Google Scholar 

  13. S. G. Sanches, J. H. Flores and M. I. P. da Silva, Mater. Res. Bull., 109, 82 (2019).

    Article  CAS  Google Scholar 

  14. L. Da Vià, C. Recchi, E. O. Gonzalez-Yanez, T. E. Davies and J. A. Lopez-Sanchez, Appl. Catal. B: Environ., 202, 281 (2017).

    Article  CAS  Google Scholar 

  15. A. Hameed, I. M. Ismail, M. Aslam and M. Gondal, Appl. Catal. A: Gen., 470, 327 (2014).

    Article  CAS  Google Scholar 

  16. T. Jedsukontorn, V. Meeyoo, N. Saito and M. Hunsom, Chem. Eng. J., 281, 252 (2015).

    Article  CAS  Google Scholar 

  17. T. Jedsukontorn, T. Ueno, N. Saito and M. Hunsom, J. Alloys Compd, 757, 188 (2018).

    Article  CAS  Google Scholar 

  18. B. **, G. Yao, X. Wang, K. Ding and F. **, ACS Sustainable Chem. Eng., 5, 6377 (2017).

    Article  CAS  Google Scholar 

  19. S. Preechajan and P. Prasertsri, Thailand Biofuels Annual (2017).

  20. V. Augugliaro, H. H. El Nazer, V. Loddo, A. Mele, G. Palmisano, L. Palmisano and S. Yurdakal, Catal. Today, 151, 21 (2010).

    Article  CAS  Google Scholar 

  21. P. Panagiotopoulou, E. E. Karamerou and D. I. Kondarides, Catal. Today, 209, 91 (2013).

    Article  CAS  Google Scholar 

  22. C. Minero, A. Bedini and V. Maurino, Appl. Catal. B: Environ., 128, 135 (2012).

    Article  CAS  Google Scholar 

  23. R. Chong, J. Li, X. Zhou, Y. Ma, J. Yang, L. Huang, H. Han, F. Zhang and C. Li, Chem. Commun., 50, 165 (2014).

    Article  CAS  Google Scholar 

  24. T. Jedsukontorn, V. Meeyoo, N. Saito and M. Hunsom, Chinese J. Catal., 37, 1975 (2016).

    Article  CAS  Google Scholar 

  25. N. Kondamudi, M. Misra, S. Banerjee, S. Mohapatra and S. Mohapatra, Appl. Catal. B: Environ., 126, 180 (2012).

    Article  CAS  Google Scholar 

  26. Y. Zhang, N. Zhang, Z.-R. Tang and Y.-J. Xu, Chem. Sci., 4, 1820 (2013).

    Article  CAS  Google Scholar 

  27. A. Molinari, A. Maldotti, A. Bratovcic and G. Magnacca, Catal. Today, 206, 46 (2013).

    Article  CAS  Google Scholar 

  28. N. A. Hermes, A. R. Corsetti, A. S. Pacheco and M. A. Lansarin, J. Adv. Oxidation Technologies, 18, 315 (2015).

    Article  CAS  Google Scholar 

  29. N. A. Hermes, A. Corsetti and M. A. Lansarin, Chem. Lett., 43, 143 (2014).

    Article  CAS  Google Scholar 

  30. B. D. Viezbicke, S. Patel, B. E. Davis and D. P. Birnie III, Physica Status Solidi, 252, 1700 (2015).

    Article  CAS  Google Scholar 

  31. T. Subramanyam, V. Nagendra, P. Goutham and K. Subramanya, Microelectron. Solid State Electronics, 5, 14 (2016).

    Google Scholar 

  32. E. Vasilaki, D. Vernardou, G. Kenanakis, M. Vamvakaki and N. Katsarakis, Appl. Phys. A, 123, 231 (2017).

    Article  CAS  Google Scholar 

  33. T. Saison, N. Chemin, C. Chanéac, O. Durupthy, V. Ruaux, L. Mariey, F. O. Maugé, P. Beaunier and J.-P. Jolivet, J. Phys. Chem. C, 115, 5657 (2011).

    Article  CAS  Google Scholar 

  34. A. Murphy, Solar Energy Mater. Solar Cells, 91, 1326 (2007).

    Article  CAS  Google Scholar 

  35. J. Ren-Xu, D. Lin-Peng, N. Ying-**, L. Cheng-Zhan, S. Qing-Wen, T. **ao-Yan, Y. Fei and Z. Yu-Ming, Chinese Phys. B, 24, 038103 (2015).

    Article  CAS  Google Scholar 

  36. H.-Y. Jiang, G. Liu, T. Wang, P. Li, J. Lin and J. Ye, RSC Adv., 5, 92963 (2015).

    Article  CAS  Google Scholar 

  37. Y. Zhang, G. Han, H. Wu, X. Wang, Y. Liu, J. Zhang, H. Liu, H. Zheng, X. Chen and C. Liu, Nanoscale Res. Lett., 13, 237 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. J. Wang, M. Qin, H. Tao, W. Ke, Z. Chen, J. Wan, P. Qin, L. **ong, H. Lei and H. Yu, Appl. Phys. Lett., 106, 121104 (2015).

    Article  CAS  Google Scholar 

  39. S. K. Kansal, S. Sood, A. Umar and S. Mehta, J. Alloys Compd., 581, 392 (2013).

    Article  CAS  Google Scholar 

  40. C. Ma, J. Yan, P. Liu, Y. Wei and G. Yang, J. Mater. Chem. C, 4, 6063 (2016).

    Article  CAS  Google Scholar 

  41. S. Sood, A. Umar, S. K. Mehta and S. K. Kansal, Ceram. Int., 41, 3355 (2015).

    Article  CAS  Google Scholar 

  42. M. R. Arefi and S. Rezaei-Zarchi, Int. J. Mol. Sci., 13, 4340 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. S. Anandan, Y. Ikuma and K. Niwa, Solid State Phenomena, 162, 239 (2010).

    Article  CAS  Google Scholar 

  44. J. Huo, Y Hu, H. Jiang and C. Li, Nanoscale, 6, 9078 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. F. Amano, K. Nogami, M. Tanaka and B. Ohtani, Langmuir, 26, 7174 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. H. Kominami, S.-y. Murakami, J.-i. Kato, Y. Kera and B. Ohtani, J. Phys. Chem. B, 106, 10501 (2002).

    Article  CAS  Google Scholar 

  47. M. D. O. Melo and L. A. Silva J. Brazilian Chem. Soc, 22, 1399 (2011).

    CAS  Google Scholar 

  48. G. F. Ijpelaar, D. J. Harmsen, M. Heringa and W. Kiwa, Environ. Eng. Sci., 4, 51 (2007).

    Article  Google Scholar 

  49. D. J. Wesolowski, P. Bénézeth and D. A. Palmer, Geochim. Cosmochim. Acta, 62, 971 (1998).

    Article  CAS  Google Scholar 

  50. S. Demirel-Gülen, M. Lucas and P. Claus, Catal. Today, 102, 166 (2005).

    Article  CAS  Google Scholar 

  51. C. Hofman-Caris and E. Beerendonk, New concepts of UV/H2O2 oxidation, KWR Watercycle Research Institute, Nieuwegein, the Netherlands (2011).

    Google Scholar 

  52. S. Carrettin, P. McMorn, P. Johnston, K. Griffin, C. J. Kiely and G. Hutchings, Phys. Chem. Chem. Phys., 5, 1329 (2003).

    Article  CAS  Google Scholar 

  53. S. Gil, M. Marchena, L. Sánchez-Silva, A. Romero, P. Sánchez and J. L. Valverde, Chem. Eng. J., 178, 423 (2011).

    Article  CAS  Google Scholar 

  54. S. X. Zhang, Adv. Mater. Res., 573–574, 145 (2012).

    Google Scholar 

  55. C. Xu, Y. Du, C. Li, J. Yang and G. Yang, J. Adv. Oxidation Technologies, 164, 334 (2015).

    CAS  Google Scholar 

  56. C.-H. Zhou, J. N. Beltramini, C.-X. Lin, Z.-P. Xu, G. M. Lu and A. Tanksale, Catal. Sci. Technol., 1, 111 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Royal Golden Jubilee Ph.D. Program of the Thailand Research Fund (PHD/0241/2558) and the Embassy of France in Thailand for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjapon Chalermsinsuwan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Limpachanangkul, P., Jedsukontorn, T., Zhang, G. et al. Comparative photocatalytic behavior of photocatalysts (TiO2, SiC, Bi2O3, ZnO) for transformation of glycerol to value added compounds. Korean J. Chem. Eng. 36, 1527–1535 (2019). https://doi.org/10.1007/s11814-019-0326-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0326-7

Keywords

Navigation