Log in

Production of levulinic acid and ethyl levulinate from cellulosic pulp derived from the cooking of lignocellulosic biomass with active oxygen and solid alkali

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Biomass-derived levulinic acid (LA) and its esters are currently envisaged as versatile, renewable platform chemicals. In this study, cellulosic pulp derived from the cooking of lignocellulosic biomass with active oxygen and solid alkali was employed as raw material for the formation of LA or ethyl levulinate (EL). This pretreatment process is highly effective for the delignification and deconstruction of lignocellulose matrix, making a facile degradation of the resulting cellulosic pulp to LA or EL. At this point, the acid-catalyzed hydrolysis or ethanolysis of cellulosic pulp was optimized by response surface methodology (RSM), offering desirable LA yield of 65.3% or EL yield of 62.7%, which is significantly higher than those obtained from raw biomass. More importantly, coking behavior on the inwall of the reactor was eliminated during the hydrolysis or ethanolysis of cellulosic pulp, which is one of the top challenges for the acid-catalyzed conversion of biomass in an industrial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Tan, K. Chen and P. Liu, Renew. Sust. Energy Rev., 41, 368 (2015).

    Article  Google Scholar 

  2. F. D. Pileidis and M. M. Titirici, ChemSusChem, 9, 562 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. R. Kataria, A. Mol, E. Schulten, A. Happel and S. I. Mussatto, Ind. Crops Prod., 106, 48 (2017).

    Article  CAS  Google Scholar 

  4. W. Apiwatanapiwat, P. Vaithanomsat, S. Ushiwaka, K. Morimitsu, M. Machida, W. Thanapase, Y. Murata and A. Kosugi, Biomass Convers. Bior., 6, 181 (2016).

    Article  CAS  Google Scholar 

  5. G. Janusz, A. Pawlik, J. Sulej, U. Świderska-Burek, A. Jarosz-Wilkołazka and A. Paszczyński, FEMS Microbiol. Rev., 41, 941 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. W. Wang, C. Zhang, X. Sun, S. Su, Q. Li and R. J. Linhardt, World J. Microbiol. Biotechnol., 33, 125 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. C. Alvarez-Vasco, R. Ma, M. Quintero, M. Guo, S. Geleynse, K. K. Ramasamy, M. Wolcott and X. Zhang, Green Chem., 18, 5133 (2016).

    Article  CAS  Google Scholar 

  8. M. Francisco, A. van den Bruinhorst and M. C. Kroon, Green Chem., 14, 2153 (2012).

    Article  CAS  Google Scholar 

  9. H. Tadesse and R. Luque, Energy Environ. Sci., 4, 3913 (2011).

    Article  CAS  Google Scholar 

  10. M. E. Vallejos, M. D. Zambon, M. C. Area and A. A. da Silva Curvelo, Ind. Crops Prod., 65, 349 (2015).

    Article  CAS  Google Scholar 

  11. N. Kvarnlöf and U. Germgård, BioResources, 10, 3934 (2015).

    Article  CAS  Google Scholar 

  12. M. Naqvi, E. Dahlquist, A. S. Nizami, M. Danish, S. Naqvi, U. Farooq, A. S. Qureshi and M. Rehan, Energy Procedia, 142, 977 (2017).

    Article  CAS  Google Scholar 

  13. Y. Jiang, X. Zeng, R. Luque, X. Tang, Y. Sun, T. Lei, S. Liu and L. Lin, ChemSusChem, 10, 3982 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Y. Jiang, N. Ding, B. Luo, Z. Li, X. Tang, X. Zeng, Y. Sun, S. Liu, T. Lei and L. Lin, ChemCatChem, 9, 2544 (2017).

    Article  CAS  Google Scholar 

  15. Q. Yang, J. Shi, L. Lin, J. Zhuang, C. Pang, T. **e and Y. Liu, J. Agric. FoodChem., 60, 4656 (2012).

    Article  CAS  Google Scholar 

  16. J. J. Bozell, L. Moens, D. Elliott, Y. Wang, G. Neuenscwander, S. Fitzpatrick, R. Bilski and J. Jarnefeld, Resour. Conserv. Recycl., 28, 227 (2000).

    Article  Google Scholar 

  17. H. Im, B. Kim and J. W. Lee, Bioresour. Technol., 193, 386 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. T. H. Kim, Y. K. Oh, J. W. Lee and Y. K. Chang, Algal Res., 26, 431 (2017).

    Article  Google Scholar 

  19. J. Yang, J. Park, J. Son, B. Kim and J. W. Lee, Bioresour. Technol. Rep., 2, 84 (2018).

    Article  Google Scholar 

  20. X. Li, T. Lei, Z. Wang, X. Li, M. Wen, M. Yang, G. Chen, X. He, Q. Guan and Z. Li, Ind. Crops Prod. 116, 73 (2018).

    Article  CAS  Google Scholar 

  21. C. Liu, Q. Feng, J. Yang and X. Qi, Bioresour. Technol., 255, 50 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. J. Du, C. **ong, B. Luo, Y. Sun, X. Tang, X. Zeng, T. Lei, S. Liu and L. Lin, BioResources, 12, 5851 (2017).

    Article  CAS  Google Scholar 

  23. C. Chang, P. Cen and X. Ma, Bioresour. Technol., 98, 1448 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. G. T. Jeong and D. H. Park, Appl. Biochem. Biotechnol., 161, 41 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. L. Peng, L. Lin and H. Li, Ind. Crops Prod., 40, 136 (2012).

    Article  CAS  Google Scholar 

  26. H. Li, L. Peng, L. Lin, K. Chen and H. Zhang, J. Energy Chem., 22, 895 (2013).

    Article  CAS  Google Scholar 

  27. C. Chang, G. Xu and X. Jiang, Bioresour. Technol., 121, 93 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. D.W. Rackemann, J. P. Bartley, M. D. Harrison and W. O. Doherty, RSC Adv., 6, 74525 (2016).

    Article  CAS  Google Scholar 

  29. D. Ding, J. **, J. Wang, X. Liu, G. Lu and Y. Wang, Green Chem., 17, 4037 (2015).

    Article  CAS  Google Scholar 

  30. S. Gámez, J. J. González-Cabriales, J. A. Ramírez, G. Garrote and M. Vázquez, J. Food Eng., 74, 78 (2006).

    Article  CAS  Google Scholar 

  31. H. S. Kim and G. T. Jeong, Korean J. Chem. Eng., 35, 2232 (2018).

    Article  CAS  Google Scholar 

  32. K. Zhong and Q. Wang, Carbohydr. Polym., 80, 19 (2010).

    Article  CAS  Google Scholar 

  33. N. A. S. Ramli and N. A. S. Amin, BioEnergy Res., 10, 50 (2017).

    Article  CAS  Google Scholar 

  34. C. Yang, H. L. Song, F. Chen and T. Zou, J. Food Sci., 76, C1267 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Y. Muranaka, T. Suzuki, H. Sawanishi, I. Hasegawa and K. Mae, Ind. Eng. Chem. Res., 53, 11611 (2014).

    Article  CAS  Google Scholar 

  36. F. Shen, R. L. Smith Jr., L. Li, L. Yan and X. Qi, ACS Sustainable Chem. Eng., 5, 2421 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **ng Tang or Lu Lin.

Electronic supplementary material

11814_2019_254_MOESM0_ESM.pdf

Production of levulinic acid and ethyl levulinate from cellulosic pulp derived from the cooking of lignocellulosic biomass with active oxygen and solid alkali

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, C., Wei, J., Tang, X. et al. Production of levulinic acid and ethyl levulinate from cellulosic pulp derived from the cooking of lignocellulosic biomass with active oxygen and solid alkali. Korean J. Chem. Eng. 36, 740–752 (2019). https://doi.org/10.1007/s11814-019-0254-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0254-6

Keywords

Navigation