Log in

Effect of water addition on extraction ability of eutectic solvent choline chloride+ 1,2-propanediol for separation of hexane/heptane+ethanol systems

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The ability of binary deep eutectic solvent choline chloride+1,2-propanediol (DES1; 1 : 3 mole ratio) and ternary deep eutectic solvent choline chloride+1,2-propanediol+water (DES2; 1 : 3 : 3 mole ratio) for breaking the azeotropes hexane/heptane+ethanol by means of liquid-liquid extraction was evaluated. Liquid-liquid equilibrium experiments were performed at 298.15 K, at atmospheric pressure, and data were correlated by NRTL and UNIQUAC models. Thermodynamic properties (density, viscosity, refractive index and speed of sound) of DES1 and DES2 were determined in temperature range from 288.15 K to 333.15 K and at atmospheric pressure. Extraction ability of the investigated eutectics yielded promising results in comparison with conventional solvents. Besides a high selectivity towards ethanol, an advantage of DES2 is its lower viscosity and higher distribution ratio values, which is an important aspect for a potential industrial application. Another advantage of both investigated eutectics is their easy and high recoverability from the extract layer based on their negligible vapor pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed and V. Tambyrajah, Chem. Commun., 0, 70 (2003).

    Article  CAS  Google Scholar 

  2. A. Hayyan, F. S. Mjalli, I. M. AlNashef, Y. M. Al-Wahaibi, T. Al-Wahaibi and M. A. Hashim, J. Mol. Liq., 178, 137 (2013).

    Article  CAS  Google Scholar 

  3. Z. Chen, B. Zhou, H. Cai, W. Zhu and X. Zou, Green Chem., 11, 275 (2009).

    Article  CAS  Google Scholar 

  4. E. R. Cooper, C. D. Andrews, P. S. Wheatley, P. B. Webb, P. Wormald and R. E. Morris, Nature, 430, 1012 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. J. D. Mota-Morales, M. C. Gutiérrez, I. C. Sanchez, G. Luna-Bárcenas and F. Monte, Chem. Commun., 47, 5328 (2011).

    Article  CAS  Google Scholar 

  6. F. S. Oliveira, A. B. Pereiro, L. P. N. Rebelo and I. M. Marrucho, Green Chem., 15, 1326 (2013).

    Article  CAS  Google Scholar 

  7. Z. Li and P. I. Lee, Int. J. Pharm., 505, 283 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. N. R. Rodriguez, J. F. Guell and M. C. Kroon, J. Chem. Eng. Data, 61, 865 (2016).

    Article  CAS  Google Scholar 

  9. G. Li, T. Zhu and Y. Lei, Korean J. Chem. Eng., 32, 2103 (2015).

    Article  CAS  Google Scholar 

  10. A. Hayyan, F. S. Mjalli, I. M. AlNashef, T. Al-Wahaibi, Y. M. Al-Wahaibi and M. A. Hashim, Thermochim. Acta, 541, 70 (2012).

    Article  CAS  Google Scholar 

  11. E. Ali, S. Mulyono and M. Hadj-Kali, Scaling-Up Liquid-Liquid Extraction Experiments with Deep Eutectic Solvents, New Developments in Biology, Biomedical Chemical Engineering and Materials Science.

  12. A. G. Gilani, H. G. Gilani, S. L. S. Saadat, E. Nasiri-Touli and M. Peer, Korean J. Chem. Eng., 33, 1408 (2016).

    Article  CAS  Google Scholar 

  13. J. Y. Lee and Y. K. Park, Korean J. Chem. Eng., 35(1), 210 (2017).

    Article  CAS  Google Scholar 

  14. W. Tang, L. Liu, G. Li, T. Zhu and K. Ho Row, Korean J. Chem. Eng., 34, 814 (2017).

    Article  CAS  Google Scholar 

  15. M. Francisco, A. van den Bruinhorst and M. C. Kroon, Green Chem., 14, 2153 (2012).

    Article  CAS  Google Scholar 

  16. R. Sun, T. Wang, M. Zheng, W. Deng, J. Pang, A. Wang, X. Wang and T. Zhang, ACS Catal., 5, 874 (2015).

    Article  CAS  Google Scholar 

  17. Y. Dai, G. J. Witkamp and R. Verpoorte, Food Chem., 187, 14 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Y. Dai, J. van Spronsen, G. J. Witkamp, R. Verpoorte and Y. H. Choi, Anal. Chim. Acta, 766, 61 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. M. S. Calado, G. R. Ivaniš, J. M. Vuksanovic, M. Lj. Kijevcanin, S. P. Šerbanovic and Z. P. Višak, Fluid Phase Equilib., 344, 6 (2013).

    Article  CAS  Google Scholar 

  20. V. Najdanovic-Višak, A. Rodriguez, Z. P. Višak, C. A. M. Rosa, J. N. Afonso, M. Nunes da Ponte and L. P. N. Rebelo, Fluid Phase Equilib., 254, 35 (2007).

    Article  CAS  Google Scholar 

  21. H. Renon and J. M. Prausnitz, AIChE J., 14, 135 (1968).

    Article  CAS  Google Scholar 

  22. D. S. Abrams and J. M. Prausnitz, AIChE J., 21, 116 (1975).

    Article  CAS  Google Scholar 

  23. A. S. B. Gonzalez, M. Francisco, G. Jimeno, S. L. G. De Dios and M. C. Kroon, Fluid Phase Equilib., 360, 54 (2013).

    Article  CAS  Google Scholar 

  24. M. A. Kareem, F. S. Mjalli, M. Ali Hashim, M. K. O. Hadj-Kali, F. Saadat Ghareh Bagh and I. M. Alnashef, J. Chem. Thermodyn., 65, 138 (2013).

    Article  CAS  Google Scholar 

  25. P. K. Naik, P. Dehury, S. Paul and T. Banerje, Fluid Phase Equilib., 423, 146 (2016).

    Article  CAS  Google Scholar 

  26. V. Gomis, A. Font, M. Dolores Saquete and J. García-Cano, Fluid Phase Equilib., 385, 29 (2015).

    Article  CAS  Google Scholar 

  27. R. S. Santiago, G. R. Santosf and M. Aznar, Fluid Phase Equilib., 278, 54 (2009).

    Article  CAS  Google Scholar 

  28. B. E. Poling, J. M. Prausnitz and J. P. O’Connell, The Properties of gases and liquids, 5th Ed., McGraw-Hill (2001).

    Google Scholar 

  29. F. S. Oliveira, R. Dohrn, L. P. N. Rebelo and I. M. Marrucho, Ind. Eng. Chem. Res., 55, 5965 (2016).

    Article  CAS  Google Scholar 

  30. F. S. Oliveira, R. Dohrn, A. B. Pereiro, J. M. M. Araújo, L. P. N. Rebelo and I. M. Marrucho, Fluid Phase Equilib., 419, 57 (2016).

    Article  CAS  Google Scholar 

  31. N. R. Rodriguez, B. S. Molina and M. K. Kroon, Fluid Phase Equilib., 394, 71 (2015).

    Article  CAS  Google Scholar 

  32. A. B. Pereiro, F. J. Deive, J. M. S. S. Esperança and A. Rodríguez, Fluid Phase Equilib., 294, 49 (2010).

    Article  CAS  Google Scholar 

  33. A. B. Pereiro and A. Rodríguez, Fluid Phase Equilib., 270, 23 (2008).

    Article  CAS  Google Scholar 

  34. S. Corderí, B. González, N. Calvar and E. Gómez, Fluid Phase Equilib., 337, 11 (2013).

    Article  CAS  Google Scholar 

  35. A. B. Pereiro and A. Rodriguez, Green Chem., 11, 346 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena Vuksanović.

Electronic supplementary material

11814_2018_30_MOESM1_ESM.pdf

Effect of water addition on extraction ability of eutectic solvent choline chloride+ 1,2-propanediol for separation of hexane/heptane+ethanol systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vuksanović, J., Kijevčanin, M.L. & Radović, I.R. Effect of water addition on extraction ability of eutectic solvent choline chloride+ 1,2-propanediol for separation of hexane/heptane+ethanol systems. Korean J. Chem. Eng. 35, 1477–1487 (2018). https://doi.org/10.1007/s11814-018-0030-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0030-z

Keywords

Navigation