Log in

Simulated and experimental study on temperature induced lens focal shifts

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

Optical lenses used in high temperature environment are usually affected by thermal lenses problems, but it is difficult to evaluate their focal shifts in practical applications. A three-dimensional single-lens model based on finite element solver was built to evaluate the focal shift in this study, when the temperature of surface was raised from the initial temperature to the specified temperature. An experimental method based on a Hartmann-Shack wavefront sensor was proposed to verify the rationality of the model. The nearly same results between simulations and experiments for N-BK7 and fused silica were obtained, which proves that it is feasible to analyze focal shifts of optical lenses by simulation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Yoshida, D. H. Reitze, D. B. Tanner and J. D. Mansell, Applied Optics 42, 4835 (2003).

    Article  ADS  Google Scholar 

  2. B. Schafer, M. Schöneck, A. Bayer and K. Mann, Optics Express 18, 21534 (2010).

    Article  ADS  Google Scholar 

  3. M. Stubenvoll, B. Schafer and K. Mann, Optical Express 22, 25385 (2014).

    Article  ADS  Google Scholar 

  4. M. Stubenvoll, B. Schafer, K. Mann and O Novak, Review of Scientific Instruments 87, 023904 (2016).

    Article  ADS  Google Scholar 

  5. X. Yu, M. Ni, W. Zhang, Y. Sui and S. Qin, Applied Optics 53, 4079 (2014).

    Article  ADS  Google Scholar 

  6. J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L. Byer, D. Clubley, S. Yoshida and D. H. Reitze, Applied Optics 40, 366 (2001).

    Article  ADS  Google Scholar 

  7. S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin and P. Georges, IEEE Journal of Quantum Electronics 40, 1217(2004).

  8. S. Ito, H. Nagaoka, T. Mura, K. Kobayashi, A. Endo and K. Torizuka, Applied Physics B 74, 343 (2002).

    Article  Google Scholar 

  9. J. M. Eichenholz and M. Richardson, IEEE Journal of Quantum Electronics 34, 910 (1998).

    Article  ADS  Google Scholar 

  10. M. Stubenvoll, B. Schafer and K. Mann, Optics Express 25, 25407 (2017).

    Article  ADS  Google Scholar 

  11. N. Lilienfein, H. Carstens, S. Holzberger, C. Jocher, T. Eidam, J. Limpert, A. Tunnermann, A. Apolonski, F. Krausz and I. Pupeza, Optics Letters 40, 843 (2015).

    Article  ADS  Google Scholar 

  12. H. Chen, H. Yang, X. Yu and Z. Shi, Applied Optics 52, 4370 (2013).

    Article  ADS  Google Scholar 

  13. J. M. Geary, Introduction to Wavefront Sensors, SPIE-The International Society for Optical Engineering, Bellingham, Washington USA, 51 (1995).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-mei Liang  (梁艳梅).

Additional information

This work has been supported by the National Natural Science Foundation of China (Nos.61875092 and 11374167), the State’s Key Project of Research and Development Plan (No.2016YFC0101002), and the Science and Technology Support Program of Tian** (No.17YFZCSY00740)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Xz., Liu, Ln., Zhou, Jb. et al. Simulated and experimental study on temperature induced lens focal shifts. Optoelectron. Lett. 15, 245–249 (2019). https://doi.org/10.1007/s11801-019-8164-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-019-8164-8

Document code

Navigation