Log in

Application of Abstract Semigroup Theory to the Asymptotic Behavior of \(C_0\)-Semigroups

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This study provides a general approach, how solutions of a Cauchy problem leading to bounded \(C_0-\)semigroups can be splitted into a sum of a reversible, sometimes almost periodic and a signal noise part, in cases when the relative weak compactness of the orbit needed for the application of the deLeeuw–Glicksberg theory is not given. Especially, a splitting for the Ornstein–Uhlenbeck-semigroup for a class of continuous and bounded functions is given. It is dicussed, when splittings becomes unique, how close almost periodicity is, and how spectral theory comes into play. Further, in some general cases the question, when the reversible part becomes almost periodic is answered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Arendt, W., Grabosch, A., Greiner, G., Groh, U., Lotz, H.P., Moustakas, U., Nagel, R., Neubrander, F., Schlotterbeck, U.: One-Parameter Semigroups of Positive Operators, Volume 1184 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (1986)

    Google Scholar 

  2. Arhangel’skii, A.V.: Spaces of map**s and rings of continuous functions. In: General Topology, III, volume 51 of Encyclopaedia of Mathematical Sciences, pp. 71–156. Springer, Berlin (1995)

  3. Banasiak, J., Arlotti, L.: Perturbations of Positive Semigroups with Applications. Springer Monographs in Mathematics. Springer-Verlag London, Ltd., London (2006)

    MATH  Google Scholar 

  4. Bátkai, A., Kramar Fijavž, M., Rhandi, A.: Positive Operator Semigroups, volume 257 of Operator Theory: Advances and Applications. Birkhäuser/Springer, Cham (2017). From finite to infinite dimensions, With a foreword by Rainer Nagel and Ulf Schlotterbeck

  5. Batty, C.J.K., Greenfield, D.A.: Extensions of isometric dual representations of semigroups. Bull. Lond. Math. Soc. 28(4), 375–384 (1996)

    Article  MathSciNet  Google Scholar 

  6. Bourgin, R.D.: Geometric Aspects of Convex Sets with the Radon-Nikodým property, volume 993 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (1983)

    Book  Google Scholar 

  7. Budde, C.: Positive Miyadera-Voigt perturbations of bi-continuous semigroups. Positivity 25(3), 1107–1129 (2021)

    Article  MathSciNet  Google Scholar 

  8. Budde, C., Farkas, B.: Intermediate and extrapolated spaces for bi-continuous operator semigroups. J. Evol. Equ. 19(2), 321–359 (2019)

    Article  MathSciNet  Google Scholar 

  9. Budde, C., Farkas, B.: A Desch-Schappacher perturbation theorem for bi-continuous semigroups. Math. Nachr. 293(6), 1053–1073 (2020)

    Article  MathSciNet  Google Scholar 

  10. Cascales, B., Namioka, I., Orihuela, J.: The Lindelöf property in Banach spaces. Studia Math. 154(2), 165–192 (2003)

    Article  MathSciNet  Google Scholar 

  11. Cascales, B., Vera, G.: Topologies weaker than the weak topology of a Banach space. J. Math. Anal. Appl. 182(1), 41–68 (1994)

    Article  MathSciNet  Google Scholar 

  12. Da Prato, G.: An introduction to Markov semigroups. [cirm autumn school on evolution equations and semigroups (levico terme (trento), 2001)]. In: Functional Analytic Methods for Evolution Equations, volume 1855 of Lecture Notes in Math., pp. 1–63. Springer, Berlin (2004)

  13. de Leeuw, K., Glicksberg, I.: Applications of almost periodic compactifications. Acta Math. 105, 63–97 (1961)

    Article  MathSciNet  Google Scholar 

  14. Diestel, J.: Geometry of Banach Spaces–Selected Topics. Lecture Notes in Mathematics, vol. 485. Springer-Verlag, Berlin-New York (1975)

    Book  Google Scholar 

  15. Diestel, J., Uhl, J.J. Jr.: Vector Measures. Mathematical Surveys, No. 15. American Mathematical Society, Providence, R.I. (1977). With a foreword by B. J. Pettis

  16. Dinculeanu, N.: Integration on Locally Compact Spaces. Noordhoff International Publishing, Leiden (1974). Translated from the Romanian

  17. Dunford, N., Schwartz, J.T.: Linear Operators. I. General Theory. Pure and Applied Mathematics, Vol. 7. Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London (1958). With the assistance of W. G. Bade and R. G. Bartle

  18. Edgar, G.A.: Measurability in a Banach space. II. Indiana Univ. Math. J. 28(4), 559–579 (1979)

    Article  MathSciNet  Google Scholar 

  19. Ellis, R.: Locally compact transformation groups. Duke Math. J. 24, 119–125 (1957)

    Article  MathSciNet  Google Scholar 

  20. Ellis, R.: Lectures on Topological Dynamics. W. A. Benjamin, Inc., New York (1969)

    MATH  Google Scholar 

  21. Engelking, R.: Outline of General Topology. North-Holland Publishing Co., Amsterdam; PWN-Polish Scientific Publishers, Warsaw; Interscience Publishers Division John Wiley & Sons, Inc., New York (1968). Translated from the Polish by K. Sieklucki

  22. Farkas, B.: Perturbations of Bi-Continuous Semigroups. PhD thesis, Eötvös Loránd University (2003)

  23. Goldys, B., van Neerven, J.M.A.M.: Transition semigroups of Banach space-valued Ornstein-Uhlenbeck processes. Acta Appl. Math. 76(3), 283–330 (2003)

    Article  MathSciNet  Google Scholar 

  24. Greenfield, D.A.: Semigroup representations: an abstract approach. PhD thesis, University of Oxford (1994)

  25. Grothendieck, A.: Sur la classification des fibrés holomorphes sur la sphère de Riemann. Am. J. Math. 79, 121–138 (1957)

    Article  Google Scholar 

  26. Gulisashvili, A.B.: Estimates for the Pettis integral in interpolation spaces, and a generalization of some imbedding theorems. Sov. Math. Dokl. 25, 428–432 (1982)

    MATH  Google Scholar 

  27. Gulisašvili, A.B.: Behavior of the Fourier transform in function spaces. Funktsional. Anal. i Prilozhen. 14(4), 71–72 (1980)

    MathSciNet  Google Scholar 

  28. Hofmann, K.H., Morris, S.A.: The Structure of Compact Groups—A Primer for the Student—a Handbook for the Expert, volume 25 of De Gruyter Studies in Mathematics. De Gruyter, Berlin, [2020] 2020. Fourth edition [of 1646190]

  29. Jarchow, H.: Locally Convex Spaces. Mathematische Leitfäden. [Mathematical Textbooks]. B. G. Teubner, Stuttgart (1981)

  30. Junghenn, H.D.: Amenability of representations and invariant Hahn-Banach theorems. J. Anal. 28(4), 931–949 (2020)

    Article  MathSciNet  Google Scholar 

  31. Kadets, M.I.: On the connection between strong and scalar almost periodicity of Banach representations of the group of real numbers. Funktsional. Anal. i Prilozhen. 29(4), 75–77 (1995)

    MathSciNet  Google Scholar 

  32. Knapp, A.W.: Decomposition theorem for bounded uniformly continuous functions on a group. Am. J. Math. 88, 902–914 (1966)

    Article  MathSciNet  Google Scholar 

  33. Köthe, G.: Topological Vector Spaces. II, Volume 237 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York-Berlin (1979)

  34. Krengel, U.: Ergodic Theorems, Volume 6 of De Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin (1985). With a supplement by Antoine Brunel

  35. Kreulich, J.: The RAGE theorem in Banach spaces. Semigroup Forum 49(2), 151–163 (1994)

    Article  MathSciNet  Google Scholar 

  36. Kühnemund, F.: Bi-Continuous Semigroups on Spaces with Two Topologies: Theory and Applications. PhD thesis, Eberhard-Karls-Universität Tübingen (2001)

  37. Kühnemund, F.: A Hille-Yosida theorem for bi-continuous semigroups. Semigroup Forum 67(2), 205–225 (2003)

    Article  MathSciNet  Google Scholar 

  38. Laursen, K.B., Neumann, M.M.: An Introduction to Local Spectral Theory, Volume 20 of London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, New York (2000)

    Google Scholar 

  39. Megrelishvili, M.G.: Fragmentability and continuity of semigroup actions. Semigroup Forum 57(1), 101–126 (1998)

    Article  MathSciNet  Google Scholar 

  40. Musiał, K.: Pettis integral. In: Handbook of Measure Theory, Vol. I, II, pp. 531–586. North-Holland, Amsterdam (2002)

  41. Plichko, A.: Three sequential properties of dual Banach spaces in the weak\(^*\) topology. Topol. Appl. 190, 93–98 (2015)

    Article  MathSciNet  Google Scholar 

  42. Ruess, W.M., Summers, W.H.: Weak almost periodicity and the strong ergodic limit theorem for contraction semigroups. Israel J. Math. 64(2), 139–157 (1988)

    Article  MathSciNet  Google Scholar 

  43. Ruess, W.M., Summers, W.H.: Integration of asymptotically almost periodic functions and weak asymptotic almost periodicity. Dissertationes Math. (Rozprawy Mat.) 279, 38 (1989)

    MathSciNet  MATH  Google Scholar 

  44. Ruppert, W.: Compact Semitopological Semigroups: An Intrinsic Theory, Volume 1079 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (1984)

    Book  Google Scholar 

  45. Schaefer, H.H.: Banach Lattices and Positive Operators. Springer-Verlag, New York-Heidelberg (1974). Die Grundlehren der mathematischen Wissenschaften, Band 215

  46. Talagrand, M.: Pettis integral and measure theory. Mem. Amer. Math. Soc. 51(307), ix+224 (1984)

    MathSciNet  MATH  Google Scholar 

  47. Trèves, F.: Topological Vector Spaces, Distributions and Kernels. Academic Press, New York-London (1967)

    MATH  Google Scholar 

  48. van Neerven, J.: The Adjoint of a Semigroup of Linear Operators, volume of 1529 Lecture Notes in Mathematics. Springer-Verlag, Berlin (1992)

    Google Scholar 

  49. van Neerven, J.M.A.M.: Hahn-Banach type theorems for adjoint semigroups. Math. Ann. 287(1), 63–71 (1990)

    Article  MathSciNet  Google Scholar 

  50. Witz, K.G.: Applications of a compactification for bounded operator semigroups. Illinois J. Math. 8, 685–696 (1964)

    Article  MathSciNet  Google Scholar 

  51. Wiweger, A.: Linear spaces with mixed topology. Studia Math. 20, 47–68 (1961)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Budde.

Additional information

Communicated by Sanne ter Host.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

J.K thanks Professor Ruess for his suggestions and advice. Both authors want to thank the anonymous referee for the constructive feedback.

This article is part of the topical collection “Linear Operators and Linear Systems” edited by Sanne ter Horst, Dmitry S. Kaliuzhnyi-Verbovetskyi and Izchak Lewkowicz.

Appendix A

Appendix A

1.1 On Idempotents

In this section, we recall the main results on right semitopological semigroups, which are used to obtain the splittings and the group (sub)structures. As previously mentioned, in this section S is only right(left)-semitopological and not necessarily Abelian.

Definition A.1

([44, p. 12]). The set of idempotents in a right(left)-semitopological semigroup S is denoted by E(S). On E(S) we define the relations \(\le _L\) and \(\le _R\) by

$$\begin{aligned} e\le _L f&\text{ if }&ef=e, \\ e\le _R f&\text{ if }&fe=e. \end{aligned}$$

If e and f commute, then we omit the indices L and R.

Definition A.2

Let \((A,\le )\) be a set with a transitive relation. Then, an element a is called \(\le -\)maximal [−minimal] in A if for every \(a^{\prime }\in A\), \(a\le a^{\prime }\) implies \(a^{\prime } \le a\) [\(a^{\prime } \le a\) implies \(a\le a^{\prime }\)].

1.2 Topological Vector Spaces

Next, we recall some consequences of [29, Corollary 2 (a), p. 127]. In particular, we have the following.

Proposition A.3

Let \(E\subset F\subset X^*\) and \(\tau \) be a locally convex topology on \(X^*\), where \(\sigma (X^*,X)\subset \tau \subset { \displaystyle \left\| {\cdot } \right\| } .\) If no vector of E can be separated from F by a \(\tau -\)continuous functional, then \(\overline{E}^{\tau }=\overline{F}^{\tau }.\)

Proof

If \(\overline{E}^{\tau }\not =\overline{F}^{\tau },\) then there exists an \(x\in \overline{F}^{\tau } \backslash \overline{E}^{\tau }\) and a \(\tau -\)continuous functional \(\phi \) such that \(\phi _{|\overline{E}^{\tau }}=0\) and \(\phi (x)=1.\) By definition, we have for net \({ \left\{ { {x}_{\lambda } } \right\} _{{\lambda } \in {\Lambda }} }\subset F\) the \(\tau \)-convergence \(x_{\lambda }\rightarrow x.\) Moreover, we find a subnet that has no intersection with \(\overline{E}^{\tau }.\) The continuity \(\phi \) leads to an element \(x_{\lambda _0}\) with \(\phi (x_{\lambda _0})>1/2,\) which illustrates the contradiction. \(\square \)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budde, C., Kreulich, J. Application of Abstract Semigroup Theory to the Asymptotic Behavior of \(C_0\)-Semigroups. Complex Anal. Oper. Theory 16, 105 (2022). https://doi.org/10.1007/s11785-022-01285-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11785-022-01285-w

Keywords

Mathematics Subject Classification

Navigation