Log in

Self-assembled activated carbon sandwiched graphene film for symmetrical supercapacitors

用于对称型超级电容器的自组装活性炭插层石墨烯膜

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Activated carbon (AC) particles sandwiched reduced graphene oxide sheets (rGO) film has been successfully fabricated via a facile self-assemble approach. The as-formed AC/rGO film is self-standing, flexible and mechanically robust, allowing to be transferred to any substrate on demand without rupture. Since AC particles effectively suppressed the restacking of the rGO sheet, AC/rGO film exhibits loose layer-by-layer stacking structures with various gaps between AC particles and rGO sheets, which is different from compact structures of pure graphene films. The as-formed gaps provide fast diffusion channels for electrolyte ions and enhanced accessible surface area of rGO. Therefore, the AC/rGO electrode delivers improved electrochemical performance over the voltage range of 0.0—3.0 V. This work offers a promising strategy to design free-standing supercapacitor electrodes based on traditional nanocarbon materials.

摘要

本文报道了活性炭插层石墨烯膜的自组装制备方法. 制备的复合碳膜兼具自支撑、 柔性和出色力学**度, 可按需无损转移到各种基材上. 由于活性炭颗粒有效抑制了石墨烯片的层层堆积, 因此复合碳膜展现出疏松多孔的层状结构, 这与石墨烯薄膜的致密结构不同. 碳膜层间多孔结构为电解质离子提供快速扩散通道, 并增加石墨烯膜的可利用表面积. 因此, 复合碳膜电极在 0.0~3.0 V 的电压范围内呈现出高比电容和出色的循环性能. 本研究为使用传统碳材料制造高性能柔性电极, 提供了一种简单高效的方法.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WANG **an-fu, LU **-hong, LIU Bin, CHEN Di, TONG Ye-xiang, SHEN Guo-zhen. Flexible energy-storage devices: Design consideration and recent progress [J]. Advanced Materials, 2014, 26(28): 4763–4782. DOI: 10.1002/adma. 201400910.

    Article  Google Scholar 

  2. LIU Wei, SONG Min-sang, KONG Biao, CUI Yi. Flexible and stretchable energy storage: Recent advances and future perspectives [J]. Advanced Materials, 2017, 29(1): 1603436–1603469. DOI: 10.1002/adma.201603436.

    Article  Google Scholar 

  3. LI Lin, WU Zhong, YUAN Shuang, ZHANG **n-bo. Advances and challenges for flexible energy storage and conversion devices and systems [J]. Energy Environmental Science, 2014, 7(7): 2101–2122. DOI: 10.1039/c4ee00318g.

    Article  Google Scholar 

  4. CONWAY B E. Electrochemical supercapacitors: Scientific fundamentals and technological applications [M]. Kluwer, The Netherlands: Springer, 1999.

    Book  Google Scholar 

  5. MILLER J R, SIMON P. Electrochemical capacitors for energy management [J]. Science, 2008, 321(5889): 651–652. DOI: 10.1126/science.1158736.

    Article  Google Scholar 

  6. SIMON P, GOGOTSI Y Materials for electrochemical capacitors [J]. Nature Materials, 2008, 7(11): 845–854. DOI: 10.1038/nmat2297.

    Article  Google Scholar 

  7. LIU Li, FENG Yu, WU Wei. Recent progress in printed flexible solid-state supercapacitors for portable and wearable energy storage [J]. Journal of Power Sources, 2019, 410-411(15): 69–77. DOI: 10.1016/j.jpowsour.2018.11.012.

    Article  Google Scholar 

  8. WANG Guo-**, ZHANG Lei, ZHANG Jun-jun. A review of electrode materials for electrochemical supercapacitors [J]. Chemical Society Reviews, 2012, 41(2): 797–828. DOI: 10.1039/clcsl5060j.

    Article  Google Scholar 

  9. GONZALEZ A, GOIKOLEA E, BARRENA J A, MYS Y K R. Review on supercapacitors: technologies and materials [J]. Renewable and Sustainable Energy Reviews, 2016, 58: 1189–1206. DOI: 10.1016/j.rser.2015.12.249.

    Article  Google Scholar 

  10. HUANG Yi, LIANG Jia-jie, CHEN Yong-sheng. An overview of the applications of graphene-based materials in supercapacitors [J]. Small, 2012, 8(12): 1805–1834. DOI: 10.1002/smll.201102635.

    Article  Google Scholar 

  11. STOLLER M D, PARK S J, ZHU Yan-wu, AN J H, RUOFF R S. Graphene-based ultracapacitors [J]. Nano Letters, 2008, 8(10): 3498–3502. DOI: 10.1021/nl802558y

    Article  Google Scholar 

  12. GWON H, KIM H S, LEE K U, SEO D H, PARK Y C, LEE Y S. Flexible energy storage devices based on graphene paper [J]. Energy and Environmental Science, 2011, 4(4): 1277–1280. DOI: 10.1039/C0EE00640H.

    Article  Google Scholar 

  13. EL-KADY M F, SHAO Yuan-long, KANER R B. Graphene for batteries, supercapacitors and beyond [J]. Nature Reviews Materials, 2016, 1(7): 16033. DOI: 10.1038/natrevmats.2016.33.

    Article  Google Scholar 

  14. GUO **ao-tian, ZHENG Sha-sha, ZHANG Guang-xun, XIAO **ao, LI **n-ran, XU Yu-xia, XUE Huai-guo, PANG Huan. Nanostructured graphene-based materials for flexible energy storage [J]. Energy Storage Materials, 2017, 9: 150–169. DOI: 10.1016/j.ensm.2017.07.006.

    Article  Google Scholar 

  15. YANG Zhou-fei, TIAN Jia-rui, YIN Ze-fang, CUI Chao-jie, QIAN Wei-zhong, WEI Fei. Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review [J]. Carbon, 2019, 141: 467–480. DOI: 10.1016/j.carbon.2018.10.010.

    Article  Google Scholar 

  16. CAO Xue-bo, QI Dian-peng, YIN Sheng-yan, BU **g, LI Feng-ji, GOH C F, ZHANG Sam, CHEN **ao-dong. Ambient fabrication of large-area graphene films via a synchronous reduction and assembly strategy [J]. Advanced Materials, 2013, 25(21): 2957–2962. DOI: 10.1002/adma.201300586.

    Article  Google Scholar 

  17. LIU Gong-**, JIN Wan-qin, XU Nan-**. Graphene-based membranes [J]. Chemical Society Reviews, 2015, 44(15): 5016–5030. DOI: 10.1039/C4CS00423J.

    Article  Google Scholar 

  18. WU Qiong, XU Yu-xi, YAO Zhi-yi, LIU An-ran, SHI Gao-quan. Supercapacitors based on flexible graphene/ polyaniline nanofiber composite films [J]. ACS Nano, 2010, 4(4): 1963–1970. DOI: 10.1021/nn1000035.

    Article  Google Scholar 

  19. SHI Qiu-rong, CHA Y W, SONG Yang, LEE J I, ZHU Cheng-zhou, LI **ao-yu, SONG M K, DU Dan, LIN Yue-he. 3D graphene-based hybrid materials: Synthesis and applications in energy storage and conversion [J]. Nanoscale, 2016, 8(34): 15414–15447. DOI: 10.1039/C6NR04770J.

    Article  Google Scholar 

  20. LU **ang-jun, DOU Hui, GAO Bo, YUAN Chang-zhou, YANG Su-dong, HAO Liang, SHEN Lai-fa, ZHANG **ao-gang. A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors [J]. Electrochimica Acta, 2011, 56(14): 5115–5121. DOI: 10.1016/j.electacta.2011.03.066.

    Article  Google Scholar 

  21. SUN Yi-qing, WU Qiong, XU Yu-xi, BAI Hua, LI Chun, SHI Gao-quan. Highly conductive and flexible mesoporous graphitic films prepared by graphitizing the composites of graphene oxide and nanodiamond [J]. Journal of Materials Chemistry, 2011, 21(20): 7154–7160. DOI: 10.1039/c0jm04434b.

    Article  Google Scholar 

  22. SARKER A K, HONG J D. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: High-energy electrode materials for supercapacitors [J]. Langmuir, 2012, 28(34): 12637–12646. DOI: 10.1021/la3021589.

    Article  Google Scholar 

  23. WANG Dong-niu, YANG **-li, LI **-fei, GENG Dong-sheng, LI Ru-ying, CAI Mei, SHAM T K, SUN Xue-liang. Layer by layer assembly of sandwiched graphene/SnO2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties [J]. Energy Environmental Science, 2013, 6(10): 2900–2906. DOI: 10.1039/c3ee40829a.

    Article  Google Scholar 

  24. SONG Wei-li, CAO Mao-sheng, LU Ming-ming, BI Song, WANG Chan-yuan, LIU Jia, YUAN Jie, FAN Li-zhen. Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding [J]. Carbon, 2014, 66: 67–76. DOI: 10.1016/j.carbon.2013.08.043.

    Article  Google Scholar 

  25. YU Ding-shan, DAI Li-ming. Self-assembled graphene/ carbon nanotube hybrid films for supercapacitors [J]. Journal of Physical Chemistry Letters, 2010, 1(2): 467–470. DOI: 10.1021/jz9003137.

    Article  MathSciNet  Google Scholar 

  26. LI **ng, TANG Yao, SONG Jun-hua, YANG Wei, WANG Ming-shan, ZHU Cheng-zhou, ZHAO Wen-gao, ZHENG Jian-ming, LIN Yue-he. Self-supporting activated carbon/ carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor [J]. Carbon, 2018, 129: 236–244. DOI: 10.1016/j.carbon.2017.11.099.

    Article  Google Scholar 

  27. SONG Li, CAO Xue-bo, LI Lei, WANG Qiao-di, YE Hua-ting, GU Li, MAO Chang-jie, SONG Ji-ming, ZHANG Sheng-yi, NIU He-lin. General method for large-area films of carbon nanomaterials and application of a self-assembled carbon nanotube film as a high-performance electrode material for an all-solid-state supercapacitor [J]. Advanced Functional Materials, 2017, 27(21): 1700474. DOI: 10.1002/adfm.201700474.

    Article  Google Scholar 

  28. YE Gui, YU Zhi-yong, LI Yi-ming, LI Lei, SONG Li, GU Li, CAO Xue-bo. Efficient treatment of brine wastewater through a flow-through technology integrating desalination and photocatalysis [J]. Water Research, 2019, 157: 134–144. DOI: 10.1016/j.watres.2019.03.058.

    Article  Google Scholar 

  29. LIU Piao, HE Wen-qiang, LU An-xian. Preparation of low-temperature sintered high conductivity inks based on nanosilver self-assembled on surface of graphene [J]. Journal of Central South University, 2019, 26: 2953–2960. DOI: 10.1007/s11771-019-4227-z.

    Article  Google Scholar 

  30. ZHOU **, YU **n. Facile synthesis of Sb@Sb2O3/reduced graphene oxide composite with superior lithium-storage performance [J]. Journal of Central South University, 2019, 26: 1493–1502. DOI: 10.1007/sll771-019-4105-8.

    Article  Google Scholar 

  31. OU **ng, YANG Cheng-hao, XIONG Xun-hui, ZHENG Feng-hua, PAN Qi-chang, JIN Chao, LIU Mei-lin, HUANG Kevin. A new rGO-overcoated Sb2Se3 nanorods anode for Na+ battery: In situ x-ray diffraction study on a live sodiation/desodiation process [J]. Advanced Functional Materials, 2017, 27(13): 1606242. DOI: 10.1002/adfm. 201606242.

    Article  Google Scholar 

  32. ZONG Meng, HUANG Ying, ZHAO Yang, SUN Xu, QU Chun-hao, LUO Di-di, ZHENG Jiang-bo. Facile preparation, high microwave absorption and microwave absorbing mechanism of RGO-Fe3O4 composites [J]. RSC Advances, 2013, 3(45): 23638–23646. DOI: 10.1039/C3RA43359E.

    Article  Google Scholar 

  33. DRESSELHAUS M S, JORIO A, HOFMAN M, DRESSELHAUS G, SAITO R. Perspectives on carbon nanotubes and graphene Raman spectroscopy [J]. Nano Letters, 2010, 10(3): 751–758. DOI: 10.1021/nl904286r.

    Article  Google Scholar 

  34. WU Shu-xing, LIU Can-bin, DINH D A, HUI K S, HUI K N, YUN J M, KIM K H, Three-dimensional self-standing and conductive MnCO3@graphene/CNT networks for flexible asymmetric supercapacitors [J]. ACS Sustainable Chemistry Engineering, 2019, 7(11): 9763–9770. DOI: 10.1021/acssuschemeng.8b05935.

    Article  Google Scholar 

  35. ZHANG Li-li, ZHAO **, PERALES S, CLEVENGER B, RUOFF R S. Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors [J]. Nano Letters, 2012, 12(4): 1806–1812. DOI: 10.1021/nl203903z.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZHU Lian-wen, GU Li and LU Shao-rong conceived and designed the study. WU Yuan-yuan performed the experiments. ZHU Lian-wen edited the draft of manuscript. CHEN Ru-ting, GU Li, CAO Xue-bo and LU Shao-rong reviewed the whole manuscript. All authors replied to reviewer & apos; s comments and revised the final version.

Corresponding authors

Correspondence to Lian-wen Zhu  (朱连文), Li Gu  (谷俐) or Shao-rong Lu  (陆绍荣).

Ethics declarations

WU Yuan-yuan, ZHU Lian-wen, CHEN Ru-ting, GU Li, CAO Xue-bo and LU Shao-rong declare that they have no conflict of interest.

Additional information

Foundation item: Project(21673102) supported by the National Natural Science Foundation of China; Projects(LY18B010006, LQ19B030005) supported by the Natural Science Foundation of Zhejiang Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Yy., Zhu, Lw., Chen, Rt. et al. Self-assembled activated carbon sandwiched graphene film for symmetrical supercapacitors. J. Cent. South Univ. 27, 3603–3614 (2020). https://doi.org/10.1007/s11771-020-4505-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4505-9

Keywords

关键词

Navigation