Log in

Electrochemically exfoliated graphene as high-performance catalyst support to promote electrocatalytic oxidation of methanol on Pt catalysts

电化学剥离石墨烯作为高性能催化剂载体促进甲醇在铂催化剂上的电催化氧化

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Electrochemically exfoliated graphene (EEG) is a kind of high-quality graphene with few oxygen-containing functional groups and defects on the surface, and thereby is more suitable as catalyst support than other carbon materials such as extensively used reduced graphene oxide (rGO). However, it is difficult to grow functional materials on EEG due to its inert surface. In this work, ultra-small Pt nanocrystals (∼2.6 nm) are successfully formed on EEG and show better electrocatalytic activity towards methanol oxidation than Pt catalysts on rGO. The outstanding catalytic properties of Pt catalysts on EEG can be attributed to the fast electron transfer through EEG and high quality of Pt catalysts such as small grain size, high dispersibility and low oxidation ratio. In addition, SnO2 nanocrystals are controllably generated around Pt catalysts on EEG to raise the poison tolerance of Pt catalysts through using glycine as a linker. Owing to its outstanding properties such as high electrical conductivity and mechanical strength, EEG is expected to be widely used as a novel support for catalysts.

摘要

电化学剥离石墨烯是一种高质量的石墨烯, 其表面几乎没有含氧官能团和缺陷, 因此比其他碳 材料(例如广泛使用的还原氧化石墨烯)更适合作为催化剂载体。然而, 由于石墨烯的惰性表面, 其功 能材料很难在电化学剥离的石墨烯上生长。在这项工作中, 超小的Pt 纳米晶(∼2.6 nm)成功地生长在 电化学剥离的石墨烯表面, 对甲醇氧化的电催化活性优于还原氧化石墨烯负载的Pt 催化剂。电化学 剥离石墨烯负载的铂催化剂具有优异的电催化性能, 这主要归功于电化学剥离石墨烯与铂之间的快速 电子转移, 同时, 电化学剥离石墨烯负载的铂催化剂具有颗粒尺寸小、分散性高、氧化态Pt 含量低 等优点。此外, 利用甘氨酸作为连接剂, 在电化学剥离石墨烯上可以控制铂催化剂周围生成SnO2 纳 米晶, 进一步增**铂催化剂的抗中毒能力。电化学剥离石墨烯具有良好的导电性和机械**度, 有望作 为新型催化剂载体得到广泛应用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LIU Min-min, ZHANG Rui-zhong, CHEN Wei. Graphene-supported nanoelectrocatalysts for fuel cells: Synthesis, properties, and applications [J]. Chem Rev, 2014, 114: 5117–5160. DOI: https://doi.org/10.1021/cr400523y.

    Article  Google Scholar 

  2. LONG Gui-fa, LI **ao-hua, WAN Kai, LIANG Zhen-xing, PIAO **-hua, TSIAKARAS P. Pt/CN-doped electrocatalysts: Superior electrocatalytic activity for methanol oxidation reaction and mechanistic insight into interfacial enhancement [J]. Appl Catal B: Environ, 2017, 203: 541–548. DOI: https://doi.org/10.1016/j.apcatb.2016.10.055.

    Article  Google Scholar 

  3. KIM D H, SHIN D Y, LEE Y G, AN G H, HAN J H, AHN H J, CHOI B J. Effects of SnO2 layer coated on carbon nanofiber for the methanol oxidation reaction [J]. Ceram Int, 2018, 44: 19554–19559. DOI: https://doi.org/10.1016/j.ceramint.2018.07.199.

    Article  Google Scholar 

  4. WANG Li-**, TIAN **g, LI **g-sha, ZENG **an-guang, PENG Zhi-guang, HUANG **ao-bing, TANG You-gen, WANG Hai-yan. Red-blood-cell-like nitrogen-doped porous carbon as an efficient metal-free catalyst for oxygen reduction reaction [J]. J Cent South Univ, 2019, 26: 1459–1468. DOI: https://doi.org/10.1007/s11771-019-4102-y.

    Google Scholar 

  5. CHEN Tsan-yao, HUANG Po-chun, LIAO Yen-fa, LIU Yu-ting, TEH Tsung-kuang, LIN Tsang-lang. Shell thickness effects on reconfiguration of NiOcore-Ptshell anodic catalysts in a high current density direct methanol fuel cell [J]. RSC Adv, 2016, 6: 72607–72615. DOI: https://doi.org/10.1039/c6ra17013g.

    Article  Google Scholar 

  6. XIA Zhang-xun, XU **n-long, ZHANG **ao-ming, LI Huan-qiao, WANG Su-li, SUN Gong-quan. Anodic engineering towards high-performance direct methanol fuel cells with non-precious-metal cathode catalysts [J]. J Mater Chem A, 2020, 8: 1113–1119. DOI: https://doi.org/10.1039/c9ta11440h.

    Article  Google Scholar 

  7. NAN Li-rui, YUE Wen-bo, JIANG Yang. Fabrication of graphene-porous carbon-Pt nanocomposites with high electrocatalytic activity and durability for methanol oxidation [J]. J Mater Chem A, 2015, 3: 22170–22175. DOI: https://doi.org/10.1039/c5ta06854a.

    Article  Google Scholar 

  8. ZHANG Yang-**, GAO Fei, SONG **-**, WANG **, SHIRAISHI Y, DU Yu-kou. Glycine-assisted fabrication of N-Doped graphene-supported uniform multipetal PtAg nanoflowers for enhanced ethanol and ethylene glycol oxidation [J]. ACS Sustainable Chem Eng, 2019, 7: 3176–3184. DOI: https://doi.org/10.1021/acssuschemeng.8b05020.

    Article  Google Scholar 

  9. QIN Yong, CHAO Lei, YUAN Jie, LIU Yang, CHU Fu-qiang, KONG Yong, TAO Yong-xie, LIU Mei-lin. Ultrafine Pt nanoparticle-decorated robust 3D N-doped porous graphene as an enhanced electrocatalyst for methanol oxidation [J]. Chem Commun, 2016, 52: 382–385. DOI: https://doi.org/10.1039/c5cc07482g.

    Article  Google Scholar 

  10. HE Yuan, LIU Yun-guo. Direct fabrication of highly porous graphene/TiO2 composite nanofibers by electrospinning for photocatalytic application [J]. J Cent South Univ, 2018, 25: 2182–2189. DOI: https://doi.org/10.1007/s11771-018-3906-5.

    Article  Google Scholar 

  11. ZHU Cheng-zhou, WANG **, WANG Li, HAN Lei, DONG Shao-jun. Facile synthesis of two-dimensional graphene/SnO2/Pt ternary hybrid nanomaterials and their catalytic properties [J]. Nanoscale, 2011, 3: 4376–4382. DOI: https://doi.org/10.1039/c1nr10634a.

    Article  Google Scholar 

  12. GAO Li-na, YUE Wen-bo, TAO Shan-shan, FAN Lou-zhen. Novel strategy for preparation of Graphene-Pd, Pt composite, and its enhanced electrocatalytic activity for alcohol oxidation [J]. Langmuir, 2013, 29: 957–964. DOI: https://doi.org/10.1021/la303663x.

    Article  Google Scholar 

  13. QU Yun-teng, GAO Yun-zhi, WANG Long, RAO Jian-cun, YIN Ge-**. Mild synthesis of Pt/SnO2/graphene nanocomposites with remarkably enhanced ethanol electro-oxidation activity and durability [J]. Chem Eur J, 2016, 22: 193–198. DOI: https://doi.org/10.1002/chem.201503867.

    Article  Google Scholar 

  14. WEI Wei, WANG Gang, YANG Sheng, FENG **n-liang, MULLEN K. Efficient coupling of nanoparticles to electrochemically exfoliated graphene [J]. J Am Chem Soc, 2015, 137: 5576–5581. DOI: https://doi.org/10.1021/jacs.5b02284.

    Article  Google Scholar 

  15. CHEN Chia-hsuan, YANG Shiou-wen, CHUANG Min-chiang, WOON Wei-yen, SU Ching-yuan. Towards the continuous production of high crystallinity graphene via electrochemical exfoliation with molecular in situ encapsulation [J]. Nanoscale, 2015, 7: 15362–15373. DOI: https://doi.org/10.1039/c5nr03669k.

    Article  Google Scholar 

  16. YANG Sheng, BRULLER S, WU Zhong-shuai, LIU Zhao-yang, PARVEZ K, DONG Ren-hao, RICHARD F, SAMORI P, FENG **n-liang, MULLEN K. Organic radical-assisted electrochemical exfoliation for the scalable production of high-quality graphene [J]. J Am Chem Soc, 2015, 137: 13927–13932. DOI: https://doi.org/10.1021/jacs.5b09000.

    Article  Google Scholar 

  17. YANG Sheng, LOHE M R, MULLEN K, FENG **n-liang. New-generation graphene from electrochemical approaches: Production and applications [J]. Adv Mater, 2016, 28: 6213–6221. DOI: https://doi.org/10.1002/adma.201505326.

    Article  Google Scholar 

  18. XU Ze-xuan, YUE Wen-bo, LIN Rong, CHIANG Chang-yang, ZHOU Wu-zong. Direct growth of SnO2 nanocrystallites on electrochemically exfoliated graphene for lithium storage [J]. J Energy Storage, 2019, 21: 647–656. DOI: https://doi.org/10.1016/j.est.2019.01.001.

    Article  Google Scholar 

  19. XU Ze-xuan, ZHANG **, CHEN Jia-lu, YUE Wen-bo, ZHOU Wu-zong. Growth and growth mechanism of oxide nanocrystals on electrochemically exfoliated graphene for lithium storage [J]. Energy Storage Mater, 2019, 18: 174–181. DOI: https://doi.org/10.1016/j.ensm.2018.08.023.

    Article  Google Scholar 

  20. NAN Li-rui, FAN Ze-tan, YUE Wen-bo, DONG Qiao, ZHU Li-sha, YANG Liu, FAN Lou-zhen. Graphene-based porous carbon-Pd/SnO2 nanocomposites with enhanced electrocatalytic activity and durability for methanol oxidation [J]. J Mater Chem A, 2016, 4: 8898–8904. DOI: https://doi.org/10.1039/c6ta01416j.

    Article  Google Scholar 

  21. ZHANG Jun, LIU **ang-hong, GUO **an-zhi, WU Shi-hua, WANG Shu-rong. A general approach to fabricate diverse noble-metal (Au, Pt, Ag, Pt/Au)/Fe2O3 hybrid nanomaterials [J]. Chem Eur J, 2010, 16: 8108–9700. DOI: https://doi.org/10.1002/chem.201000096.

    Article  Google Scholar 

  22. YANG Sheng, RICCIARDULLI A G, LIU Shao-hua, DONG Ren-hao, LOHE M R, BECKER A, SQUILLACI M A, SAMORI P, MULLEN K, FENG **n-liang. Ultrafast delamination of graphite into high-quality graphene using alternating currents [J]. Angew Chem Int Ed, 2017, 56: 6669–6675. DOI: https://doi.org/10.1002/anie.201702076.

    Article  Google Scholar 

  23. TURGUT H, TIAN Z R, YU Feng-jiao, ZHOU Wu-zong. Multivalent cation cross-linking suppresses highly energetic graphene oxide’s flammability [J]. J Phys Chem C, 2017, 121: 5829–5835. DOI: https://doi.org/10.1021/acs.jpcc.6b13043.

    Article  Google Scholar 

  24. ZHAO Peng, YUE Wen-bo, YUAN Xu, BAO Hua-ying. Exceptional lithium anodic performance of Pd-doped graphene-based SnO2 nanocomposite [J]. Electrochim Acta, 2017, 225: 322–329. DOI: https://doi.org/10.1016/j.electacta.2016.12.124.

    Article  Google Scholar 

  25. LI Zhong-shui, XU Shu-hong, XIE Yi-xie, WANG Yan-lin, LIN Shen. Promotional effects of trace Bi on its highly catalytic activity for methanol oxidation of hollow Pt/graphene catalyst [J]. Electrochim Acta, 2018, 264: 53–60. DOI: https://doi.org/10.1016/j.electacta.2018.01.096.

    Article  Google Scholar 

  26. CHEN Ke, ZHANG Fei, SUN **g-yu, LI Zhen-zhu, ZHANG Li, BACHMATIUK A, ZOU Zhi-yu, CHEN Zhao-long, ZHANG Li-ya, RUMMELI M H, LIU Zhong-fan. Growth of defect-engineered graphene on manganese oxides for Li-ion storage [J]. Energy Storage Mater, 2018, 12: 110–118. DOI: https://doi.org/10.1016/j.ensm.2017.12.001.

    Article  Google Scholar 

  27. PARVEZ K, WU Zhong-shuai, LI Rong-**, LIU **an-jie, GRAF R, FENG **n-liang, MULLEN K. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts [J]. J Am Chem Soc, 2014, 136: 6083–6091. DOI: https://doi.org/10.1021/ja5017156.

    Article  Google Scholar 

  28. CHU Yuan-yuan, ZHANG Ning, YANG **g-**g, WANG Hai-tao, DAI Zhao, WANG Liang, GAO Jun, TAN **ao-yao. Designed synthesis of thin CeO2 nanowires-supported Pt electrocatalysts with pore-interconnected structure and its high catalytic activity for methanol oxidation [J]. J Mater Sci, 2018, 53: 2087–2101. DOI: https://doi.org/10.1007/s10853-017-1636-y.

    Article  Google Scholar 

  29. FENG Yuan-yuan, BI Li-xiao, LIU Zeng-hua, KONG De-sheng, YU Zhang-yu. Significantly enhanced electrocatalytic activity for methanol electro-oxidation on Ag oxide-promoted PtAg/C catalysts in alkaline electrolyte [J]. J Catal, 2012, 290: 18–25. DOI: https://doi.org/10.1016/j.jcat.2012.02.013.

    Article  Google Scholar 

  30. YANG Pei-pei, YUAN **ao-lei, HU Hui-cheng, LIU Yi-lin, ZHENG Hao-wen, YANG Di, CHEN Lei, CAO Mu-han, XU Yong, MIN Yu-lin, LI Yan-guang, ZHANG Qiao. Solvothermal synthesis of alloyed ptni colloidal nanocrystal clusters (CNCs) with enhanced catalytic activity for methanol oxidation [J]. Adv Funct Mater, 2018, 28: 1704774. DOI: https://doi.org/10.1002/adfm.201704774.

    Article  Google Scholar 

  31. QIAN Wen, HAO Rui, ZHOU Jian, EASTMAN M, MANHAT B A, SUN Qiang, GOFORTH A M, JIAO Jun. Exfoliated graphene-supported Pt and Pt-based alloys as electrocatalysts for direct methanol fuel cells [J]. Carbon, 2013, 52: 595–604. DOI: https://doi.org/10.1016/j.carbon.2012.10.031.

    Article  Google Scholar 

  32. NAN Li-rui, YUE Wen-bo. Exceptional electrocatalytic activity and selectivity of platinum@Nitrogen-doped mesoporous carbon nanospheres for alcohol oxidation [J]. ACS Appl Mater Interfaces, 2018, 10: 26213–26221. DOI: https://doi.org/10.1021/acsami.8b06347.

    Article  Google Scholar 

  33. DU De-jian, DU Yi-en, YUE Wen-bo, YANG **ao-**g. Lithium storage performance of {010}-faceted and [111]-faceted anatase TiO2 nanocrystals [J]. J Cent South Univ, 2019, 26: 1530–1539. DOI: https://doi.org/10.1007/s11771-019-4109-4.

    Article  Google Scholar 

  34. WU Shou-liang, LIU Jun, LIANG De-wei, SUN Hong-mei, YE Yi-xing, TIAN Zhen-fei, LIANG Chang-hao. Photo-excited in situ loading of Pt clusters onto rGO immobilized SnO2 with excellent catalytic performance toward methanol oxidation [J]. Nano Energy, 2016, 26: 699–707. DOI: https://doi.org/10.1016/j.nanoen.2016.06.038.

    Article  Google Scholar 

  35. FENG Hong-bin, LIU Yong, LI **g-hong. Highly reduced graphene oxide supported Pt nanocomposites as highly efficient catalysts for methanol oxidation [J]. Chem Commun, 2015, 51: 2418–2420. DOI: https://doi.org/10.1039/c4cc09146a.

    Article  Google Scholar 

  36. WANG Ming-jun, SONG Xue-fen, YANG Qi, HUA Hao, DAI Shu-ge, HU Chen-guo, WEI Da-peng. Pt nanoparticles supported on graphene three-dimensional network structure for effective methanol and ethanol oxidation [J]. J Power Sources, 2015, 273: 624–630. DOI: https://doi.org/10.1016/j.jpowsour.2014.09.117.

    Article  Google Scholar 

  37. ZHAO Jian, YU Hui, LIU Zhen-sheng, JI Min, ZHANG Li-qing, SUN Guang-wei. Supercritical deposition route of preparing Pt/Graphene composites and their catalytic performance toward methanol electrooxidation [J]. J Phys Chem C, 2014, 118: 1182–1190. DOI: https://doi.org/10.1021/jp402620p.

    Article  Google Scholar 

  38. WU Shou-liang, LIU Jun, TIAN Zhen-fei, CAI Yun-yu, YE Yi-xing, YUAN Qing-lin, LIANG Chang-hao. Highly dispersed ultrafine pt nanoparticles on reduced graphene oxide nanosheets: in situ sacrificial template synthesis and superior electrocatalytic performance for methanol oxidation [J]. ACS Appl Mater Interfaces, 2015, 7: 22935–22940. DOI: https://doi.org/10.1021/acsami.5b06153.

    Article  Google Scholar 

  39. ZHOU Yi-ge, CHEN **g-**g, WANG Feng-bin, SHENG Zhen-huan, XIA **ng-hua. A facile approach to the synthesis of highly electroactive Ptnanoparticles on graphene as an anode catalyst for direct methanolfuelcells [J]. Chem Commun, 2010, 46: 5951–5953. DOI: https://doi.org/10.1039/c0cc00394h.

    Article  Google Scholar 

  40. LIANG Qing-sheng, ZHANG Li, CAI Mao-lin, LI Yong, JIANG Kun, ZHANG **n, SHEN Pei-kang. Preparation and charaterization of Pt/functionalized graphene and its electrocatalysis for methanol oxidation [J]. Electrochim Acta, 2013, 111: 275–283. DOI: https://doi.org/10.1016/j.electacta.2013.07.198.

    Article  Google Scholar 

  41. CHOI Sung-mook, SEO Min-ho, KIM Hyung-ju, KIM Won-bae. Synthesis of surface-functionalized graphene nanosheets with high Pt-loadings and their applications to methanol electrooxidation [J]. Carbon, 2011, 49: 904–909. DOI: https://doi.org/10.1016/j.carbon.2010.10.055.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-bo Yue  (岳文博).

Additional information

Foundation item

Projects(21573023, 21975030) supported by the National Natural Science Foundation of China

Contributors

YUAN Xu: Investigation, methodology, writing-original draft. ZHANG **: Investigation, validation. YUE Wen-bo: Supervision, conceptualization, writing-reviewing & editing, funding acquisition.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Yue, Wb. & Zhang, J. Electrochemically exfoliated graphene as high-performance catalyst support to promote electrocatalytic oxidation of methanol on Pt catalysts. J. Cent. South Univ. 27, 2515–2529 (2020). https://doi.org/10.1007/s11771-020-4477-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4477-9

Key words

关键词

Navigation