Log in

Synthesis of ZnGaNO solid solution–carbon nitride intercalation compound composite for improved visible light photocatalytic activity

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Visible-light-driven ZnGaNO solid solution–carbon nitride intercalation compound (CNIC) composite photocatalyst was synthesized via a mixing and heating method. The composite photocatalyst was characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared (FT-IR) spectroscopy, UV-vis diffuse reflection spectroscopy, X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy and BET surface area measurements. The activity of ZnGaNO–CNIC composite photocatalyst for photodegradation of methyl orange (MO) is higher than that of either single-phase CNIC or ZnGaNO solid solution. The as-prepared composite photocatalysts exhibit an improved photocatalytic activity due to enhancement for the separation and transport of photo-generated electron–hole pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LIANOS P. Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell. The concept of the photofuelcell: A review of a re-emerging research field [J]. J Hazardous Mater, 2011, 185(2, 3): 575–590.

    Google Scholar 

  2. KUDO A, MISEKI Y. Heterogeneous photocatalyst materials for water splitting [J]. Chem Soc Rev, 2009, 38(1): 253–278.

    Article  Google Scholar 

  3. PELAEZ M, NOLAN N T, PILLAI S C, SEERY M K, FALARAS P, KONTOS A G, DUNLOP P S M, HAMILTON J W J, BYRNE J A, O’SHEA K, ENTEZARI M H, DIONYSIOU D D. A review on the visible light active titanium dioxide photocatalysts for environmental applications [J]. Appl Catal B: Environ, 2012, 125: 331–349.

    Article  Google Scholar 

  4. OSTERLOH F E. Inorganic materials as catalysts for photochemical splitting of water [J]. Chem Mater, 2008, 20(1): 35–54.

    Article  Google Scholar 

  5. LIN **, XING **g-cheng, WANG Wen-deng, SHAN Zhi-chao, XU Fang-fang, HUANG Fu-qiang. Photocatalytic activities of heterojunction semiconductors Bi2O3/BaTiO3: A strategy for the design of efficient combined photocatalysts [J]. J Phys Chem C, 2007, 111(49): 18288–18293.

    Article  Google Scholar 

  6. WANG **n-chen, MAEDA K, THOMAS A, TAKANABE K, XIN Gang, CARLSSON J M, DOMEN K, ANTONIETTI M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light [J]. Nat Mater, 2009, 8(1): 76–80.

    Article  Google Scholar 

  7. WU Zhao-chun, GAO Hong-lin, YAN Shi-cheng, ZOU Zhi-gang. Synthesis of carbon black/carbon nitride intercalation compound composite for efficient hydrogen production [J]. Dalton Trans, 2014, 43(31): 12013–12017.

    Article  Google Scholar 

  8. LIU Gang, NIU **, SUN Cheng-hua, SMITH S C, CHEN Zhi-gang, LU Gao-qing, CHENG Hui-ming. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4 [J]. J Am Chem Soc, 2010, 132(33): 11642–11648.

    Article  Google Scholar 

  9. YAN Shi-cheng, LI Zhao-sheng, ZOU Zhi-gang. Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation [J]. Langmuir, 2010, 26(6): 3894–3901.

    Article  Google Scholar 

  10. ZHANG Yuan-jian, MORI T, YE **-hua, ANTONIETTI M. Phosphorus-doped carbon nitride solid: Enhanced electrical conductivity and photocurrent generation [J]. J Am Chem Soc, 2010, 132(18): 6294–6295.

    Article  Google Scholar 

  11. YUE Bing, LI Qiu-ye, IWAI H, KAKO T, YE **-hua. Hydrogen production using zinc-doped carbon nitride catalyst irradiated with visible light [J]. Sci Technol Adv Mater, 2011, 12(3): 034401.

    Article  Google Scholar 

  12. GAO Hong-lin, YAN Shi-cheng, WANG Jia-jia, HUANG Yu-an, WANG Peng, LI Zhao-sheng, ZOU Zhi-gang. Towards efficient solar hydrogen production by intercalated carbon nitride photocatalyst [J]. Phys Chem Chem Phys, 2013, 15(41): 18077–18084.

    Article  Google Scholar 

  13. YAN Hong-jian, YANG Hao-xin. TiO2–g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation [J]. J Alloys Compd, 2011, 509(4): L26–L29.

    Article  Google Scholar 

  14. ZHANG Zhen-yi, HUANG **-dou, ZHANG Ming-yi, YUAN Qing, DONG Bin. Ultrathin hexagonal SnS2 nanosheets coupled with g-C3N4 nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity [J]. Appl Catal B: Environ, 2015, 163: 298–305.

    Article  Google Scholar 

  15. YAN Shi-cheng, LV Shu-bai, LI Zhao-sheng, ZOU Zhi-gang. Organic–inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities [J]. Dalton Trans, 2010, 39(6): 1488–1491.

    Article  Google Scholar 

  16. GE Lei, HAN Chang-cun, LIU **g. Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange [J]. Appl Catal B: Environ, 2011, 108–109: 100–107.

    Article  Google Scholar 

  17. KANG H W, LIM S N, SONG Dong-su, PARK S B. Organic-inorganic composite of g-C3N4–SrTiO3:Rh photocatalyst for improved H2 evolution under visible light irradiation [J]. Inter J Hydro Energy, 2012, 37(16): 11602–11610.

    Article  Google Scholar 

  18. FU Jie, TIAN Yan-long, CHANG Bin-bin, XIA Feng-na, DONG **. BiOBr–carbon nitride heterojunctions: Synthesis, enhanced activity and photocatalytic mechanism [J]. J Mater Chem, 2012, 22(39): 21159–21166.

    Article  Google Scholar 

  19. XU Hui, YAN Jia, XU Yuan-guo, SONG Yan-hua, LI Hua-ming, XIA Jie-xiang, HUANG Chuan-**g, WAN Hui-lin. Novel visible-light-driven AgX/graphite-like C3N4 (X=Br, I) hybrid materials with synergistic photocatalytic activity [J]. Appl Catal B: Environ, 2013, 129: 182–193.

    Article  Google Scholar 

  20. XIANG Qian-juan, YU Jia-guo, JARONIEC M. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 [J]. J Phys Chem C, 2011, 115(15): 7355–7363.

    Article  Google Scholar 

  21. GE Lei, HAN Chang-cun. Synthesis of MWNTs/g-C3N4 composite photocatalysts with efficient visible light photocatalytic hydrogen evolution [J]. Appl Catal B: Environ, 2012, 117–118: 268–274.

    Article  Google Scholar 

  22. YANG Ming, JIN **ao-qi. Towards improved visible light-induced photocatalytic performance by Cr-doped SrTiO3–carbon nitride intercalation compound (CNIC) composite [J] Journal of Central South University, 2016, 23(2): 310–316.

    Article  Google Scholar 

  23. ASAHI R, MORIKAWA T, OHWAKI T, AOKI K, TAGA Y. Visible-llight photocatalysis in nitrogen-doped titanium oxides [J]. Science, 2001, 293(5528): 269–271.

    Article  Google Scholar 

  24. MAEDA K, TERAMURA K, LU D L, TAKATA T, SAITO N, INOUE Y, DOMEN K. Photocatalyst releasing hydrogen from water [J]. Nature, 2006, 440(7082): 295–296.

    Article  Google Scholar 

  25. HARA M, TAKATA T, KONDO J N, DOMEN K. Photocatalytic reduction of water by TaON under visible light irradiation [J]. Catal Today, 2004, 90(3, 4): 313–317.

    Article  Google Scholar 

  26. YAN Shi-cheng, WANG Zhi-qiang, LI Zhao-sheng, ZOU Zhi-gang. Two-step reactive template route to a mesoporous ZnGaNO solid solution for improved photocatalytic performance [J]. J Mater Chem, 2011, 21(15): 5682–5686.

    Article  Google Scholar 

  27. YAN Shi-cheng, LI Zhao-sheng, YU Tao, ZOU Zhi-gang. Photodegradation performance of g-C3N4 fabricated by directly heating melamine [J]. Langmuir, 2009, 25(17): 10397–10401.

    Article  Google Scholar 

  28. DRESSELHAUS M S, DRESSELHAUS G. Intercalation compounds of graphite [J]. Adv Phys, 2002, 51(1): 1–186.

    Article  Google Scholar 

  29. CHEN Hai-yan, WEN Wen, WANG Qi, HANSON J C, MUCKERMAN J T, FUJITA E, FRENKEL A I, RODRIGUEZ J A. Preparation of (Ga1-xZnx)(N1-xOx) photocatalysts from the reaction of NH3 with Ga2O3/ZnO and ZnGa2O4: In situ time-resolved XRD and XAFS studies [J]. J Phys Chem C, 2009, 113(9): 3650–3659.

    Article  Google Scholar 

  30. HU C C, TENG H. Gallium oxynitride photocatalysts synthesized from Ga(OH)3 for water splitting under visible light irradiation [J]. J Phys Chem C, 2010, 114(47): 20100–20106.

    Article  Google Scholar 

  31. LIN-VIEN D, COLTHUP N B, FATELLEY W G, GRASSELLI J G. The handbook of infrared and Raman characteristic frequencies of organic molecules [M]. San Diego, CA: Academic Press Inc, CA, 1991.

    Google Scholar 

  32. HYO B J, CARSTEN R, WILSON H. MOCVD of BN and GaN thin films on silicon: New attempt of GaN growth with BN buffer layer [J]. J Cryst Growth, 1998, 189: 439–444.

    Google Scholar 

  33. AI Yu-jie, XUE Cheng-shan, SUN Chuan-wei, SUN Li-li, ZHUANG Hui-zhao, WANG Fu-xue, LI Hong, CHEN **-hua. Synthesis of GaN nanowires through Ga2O3 films’ reaction with ammonia [J]. Mater Lett, 2007, 61(13): 2833–2836.

    Article  Google Scholar 

  34. YANG Ming, HUANG Qiao, JIN **ao-qi. ZnGaNO solid solution–C3N4 composite for improved visible light photocatalytic performance [J]. Mater Sci and Eng B, 2012, 177(8): 600–605.

    Article  Google Scholar 

  35. YOON S H, LEE J H. Oxidation mechanism of As(III) in the UV/TiO2 system: Evidence for a direct hole oxidation mechanism [J]. Environ Sci Technol, 2005, 39(24): 9695–9701.

    Article  Google Scholar 

  36. LIU Guang-ming, LI **ang-zhong, ZHAO **-cai, HORIKOSHI S, HIDAKA H. Photooxidation mechanism of dye alizarin red in TiO2 dispersions under visible illumination: an experimental and theoretical examination [J]. J Mol Catal A: Chem, 2000, 153(1, 2): 221–229.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Yang  (杨明).

Additional information

Foundation item: Project(51208102) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Wan, Lj. & **, Xq. Synthesis of ZnGaNO solid solution–carbon nitride intercalation compound composite for improved visible light photocatalytic activity. J. Cent. South Univ. 24, 276–283 (2017). https://doi.org/10.1007/s11771-017-3428-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-017-3428-6

Key words

Navigation