Log in

A novel kernel filtering algorithm based on the generalized half-quadratic criterion

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this work we combine the kernel method and the generalized half-quadratic criterion, and a kernel adaptive filtering algorithm is proposed based on the generalized half-quadratic criterion (KLGHQC). The generalized half-quadratic criterion (GHQC) guarantees the stability of the algorithm under the environment of the stable distribution noise, and the shape of the GHQC performance surface is determined by a constant, which improves the rate of convergence of the algorithm. Finally, the simulated results in two environments, Mackey–Glass sequence prediction and non-linear system identification. The outcome demonstrates that the KLGHQC algorithm proposed in this research outperforms other kernel filtering algorithms in the filtering accuracy and error magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article. Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Julier, S.J., Uhlmann, J.K.: Unscented filtering and nonlinear estimation[J]. Proc. IEEE 92(3), 401–422 (2004)

    Article  Google Scholar 

  2. Skretting, K., Engan, K.: Recursive least squares dictionary learning algorithm[J]. IEEE Trans. Signal Process. 58(4), 2121–2130 (2010)

    Article  MathSciNet  Google Scholar 

  3. Widrow, B., Walach, E.: Adaptive signal processing for adaptive control[J]. IFAC Proc. Vol. 16(9), 7–12 (1983)

    Article  Google Scholar 

  4. Dong, R., Wang, S.: New optimization algorithm inspired by kernel tricks for the economic emission dispatch problem with valve point[J]. IEEE Access 8, 16584–16594 (2020)

    Article  Google Scholar 

  5. Cheng, F., Chu, F., Xu, Y., et al.: A steering-matrix-based multiobjective evolutionary algorithm for high-dimensional feature selection[J]. IEEE Trans. Cybern. 52(9), 9695–9708 (2021)

    Article  Google Scholar 

  6. Pauline, S.H., Samiappan, D., Kumar, R., et al.: Variable tap-length non-parametric variable step-size NLMS adaptive filtering algorithm for acoustic echo cancellation[J]. Appl. Acoust. 159, 107074 (2020)

    Article  Google Scholar 

  7. Wang, J., Ji, Y., Zhang, X., et al.: Two-stage gradient-based iterative algorithms for the fractional-order nonlinear systems by using the hierarchical identification principle[J]. Int. J. Adapt. Control Signal Process. 36(7), 1778–1796 (2022)

    Article  MathSciNet  Google Scholar 

  8. Antoniadis, A., Paparoditis, E., Sapatinas, T.: A functional wavelet-kernel approach for time series prediction[J]. J. R. Stat. Soc. Ser. B Stat Methodol. 68(5), 837–857 (2006)

    Article  MathSciNet  Google Scholar 

  9. Wu, Q., Li, Y., Xue, W.: A kernel recursive maximum versoria-like criterion algorithm for nonlinear channel equalization[J]. Symmetry 11(9), 1067 (2019)

    Article  Google Scholar 

  10. Wang, H., Li, X., Bi, D., et al.: A robust student’s t-based kernel adaptive filter[J]. IEEE Trans. Circuits Syst. II Express Briefs 68(10), 3371–3375 (2021)

  11. Han, M., Zhang, S., Xu, M., et al.: Multivariate chaotic time series online prediction based on improved kernel recursive least squares algorithm[J]. IEEE Trans. Cybern. 49(4), 1160–1172 (2018)

    Article  Google Scholar 

  12. Zhao, S., Chen, B., Principe, J.C.: Kernel adaptive filtering with maximum correntropy criterion[C]. in The 2011 International Joint Conference on Neural Networks. IEEE, pp. 2012-2017 (2011)

  13. Dong, Q., Lin, Y.: Kernel fraction low power adaptive filtering algorithm against impulse noise[J]. Comput. Sci. 46, 80–82 (2019)

    Google Scholar 

  14. Yuan-Lian, H., Dan-Feng, W., **ao-Qiang, L., et al.: Kernel adaptive filtering algorithm based on Softplus function under non-Gaussian impulse interference[J]. Acta Phys. Sin. 70(2), 028401 (2021)

    Article  Google Scholar 

  15. Yuan-Lian, H., Li-Hua, T., Yong-Feng, Q., et al.: Quantized kernel least inverse hyperbolic sine adaptive filtering algorithm[J]. Acta Phys. Sin 71(22), 228401 (2022)

    Article  Google Scholar 

  16. Santamaria, I.: Kernel adaptive filtering: a comprehensive introduction [Book Review][J]. IEEE Comput. Intell. Mag. 5(3), 52–55 (2010)

    Article  Google Scholar 

  17. Patel, V., Bhattacharjee, S.S., Christensen, M.G.: Generalized soft-root-sign based robust sparsity-aware adaptive filters[J]. IEEE Signal Process. Lett. 30, 200–204 (2023)

    Article  Google Scholar 

  18. Kumar, K., Pandey, R., Bhattacharjee, S.S., et al.: Exponential hyperbolic cosine robust adaptive filters for audio signal processing[J]. IEEE Signal Process. Lett. 28, 1410–1414 (2021)

    Article  Google Scholar 

  19. Kumar, K., Bhattacharjee, S.S., George, N.V.: Modified Champernowne function based robust and sparsity-aware adaptive filters[J]. IEEE Trans. Circuits Syst. II Express Briefs 68(6), 2202–2206 (2020)

    Google Scholar 

  20. Steinwart, I., Scovel, C.: Mercer’s theorem on general domains: on the interaction between measures, kernels, and RKHSs[J]. Constr. Approx. 35, 363–417 (2012)

    Article  MathSciNet  Google Scholar 

  21. Aronszajn, N.: Theory of reproducing kernels[J]. Trans. Am. Math. Soc. 68(3), 337–404 (1950)

    Article  MathSciNet  Google Scholar 

  22. Sadigh, A.N., Yazdi, H.S., Harati, A.: Convergence and performance analysis of kernel regularized robust recursive least squares[J]. ISA Trans. 105, 396–405 (2020)

    Article  Google Scholar 

  23. Colding, T.H., Minicozzi, W.P.: A course in minimal surfaces[M]. American Mathematical Soc, Providence (2011)

    Book  Google Scholar 

  24. Zhang, N., Ni, J., Chen, J., Li, Z.: Steady-state mean-square error performance analysis of the tensor LMS algorithm. IEEE Trans. Circuit Syst. II Expr. Brief 68(3), 1043–1047 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Yuanlian Huo performed the verification of the experimental designand graphing; Zikang Luo performed the first draft writing and investigation; and Liu Jie do the technique analysis.

Corresponding author

Correspondence to Yuanlian Huo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, Y., Luo, Z. & Liu, J. A novel kernel filtering algorithm based on the generalized half-quadratic criterion. SIViP (2024). https://doi.org/10.1007/s11760-024-03394-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11760-024-03394-9

Keywords

Navigation