Log in

GGC-SLAM: a VSLAM system based on predicted static probability of feature points in dynamic environments

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Most existing Visual Simultaneous Localization and Map** (VSLAM) systems heavily rely on the assumption of a static world. However, in real-world scenarios, moving objects often reduce the accuracy and robustness of these systems. To mitigate the impact of moving objects on SLAM system performance, this paper introduces GGC-SLAM, a VSLAM system designed for dynamic environments based on the static probability of predictive feature points. Building on the foundation of ORB-SLAM2, this system incorporates a lightweight object detection thread for acquiring semantic information. It also integrates the Grid-based Motion Statistics (GMS) and Graph-Cut RANdom SAmple Consensus (GC-RANSAC) algorithms to enhance the speed and precision of fundamental matrix computation. The system preliminarily predicts the static probability of feature points by combining semantic information with epipolar constraints, then refines the differentiation between dynamic and static feature points using the initial probability information and a Conditional Random Field, ultimately excluding feature points deemed dynamic. We conducted evaluations using the TUM public dataset and in real-world environments, and the results show that GGC-SLAM can effectively handle dynamic feature points in dynamic scenes. While ensuring real-time operation, it demonstrates more accurate localization compared to other advanced dynamic SLAM systems. Particularly in high-dynamic scenes, our system’s average absolute trajectory error is reduced by 95.71% compared to ORB-SLAM2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Algorithm 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availibility

No datasets were generated or analysed during the current study.

References

  1. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and map**: part i. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006)

    Article  Google Scholar 

  2. Li, A., Ruan, X., Huang, J., Zhu, X., Wang, F.: Review of vision-based simultaneous localization and map**. In: 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), pp. 117–123. IEEE (2019)

  3. Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., Leonard, J.J.: Past, present, and future of simultaneous localization and map**: Toward the robust-perception age. IEEE Trans. Rob. 32(6), 1309–1332 (2016)

    Article  Google Scholar 

  4. Klein, G., Murray, D.: Parallel tracking and map** for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234. IEEE (2007)

  5. Forster, C., Zhang, Z., Gassner, M., Werlberger, M., Scaramuzza, D.: Svo: semidirect visual odometry for monocular and multicamera systems. IEEE Trans. Rob. 33(2), 249–265 (2016)

    Article  Google Scholar 

  6. Mur-Artal, R., Tardós, J.D.: Orb-slam2: an open-source slam system for monocular, stereo, and rgb-d cameras. IEEE Trans. Rob. 33(5), 1255–1262 (2017)

    Article  Google Scholar 

  7. Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 40(3), 611–625 (2017)

    Article  Google Scholar 

  8. Rosinol, A., Abate, M., Chang, Y., Carlone, L.: Kimera: an open-source library for real-time metric-semantic localization and map**. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 1689–1696. IEEE (2020)

  9. Bescos, B., Fácil, J.M., Civera, J., Neira, J.: Dynaslam: tracking, map**, and inpainting in dynamic scenes. IEEE Robot. Autom. Lett. 3(4), 4076–4083 (2018)

    Article  Google Scholar 

  10. Yu, C., Liu, Z., Liu, X-J., **e, F., Yang, Y., Wei, Q., Fei, Q.: Ds-slam: A semantic visual slam towards dynamic environments. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1168–1174. IEEE (2018)

  11. Wu, W., Guo, L., Gao, H., You, Z., Liu, Y., Chen, Z.: Yolo-slam: a semantic slam system towards dynamic environment with geometric constraint. Neural Comput. Appl. 1–16 (2022)

  12. Chang, J., Dong, N., Li, D.: A real-time dynamic object segmentation framework for slam system in dynamic scenes. IEEE Trans. Instrum. Meas. 70, 1–9 (2021)

    Google Scholar 

  13. Cheng, S., Sun, C., Zhang, S., Zhang, D.: Sg-slam: A real-time rgb-d visual slam toward dynamic scenes with semantic and geometric information. IEEE Trans. Instrum. Meas. 72, 1–12 (2022)

    Article  Google Scholar 

  14. Bian, J., Lin, W-Y., Matsushita, Y., Yeung, S-K., Nguyen, T-D., Cheng, M-M.: Gms: grid-based motion statistics for fast, ultra-robust feature correspondence. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4181–4190 (2017)

  15. Barath, D., Matas, J.: Graph-cut ransac. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6733–6741 (2018)

  16. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C-Y., Berg, A.C.: Ssd: Single shot multibox detector. In: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14, pp. 21–37. Springer (2016)

  17. Quattoni, A., Collins, M., Darrell, T.: Conditional random fields for object recognition. Adv. Neural Inf. Process. Syst. 17 (2004)

  18. Macario Barros, A., Michel, M., Moline, Y., Corre, G., Carrel, F.: A comprehensive survey of visual slam algorithms. Robotics 11(1), 24 (2022)

    Article  Google Scholar 

  19. Engel, J., Schöps, T., Cremers, D.: Lsd-slam: Large-scale direct monocular slam. In: European Conference on Computer Vision, pp. 834–849. Springer (2014)

  20. Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: real-time single camera slam. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1052–1067 (2007)

    Article  Google Scholar 

  21. Liu, X., Wen, S., Zhang, H.: A real-time stereo visual-inertial slam system based on point-and-line features. IEEE Trans. Veh. Technol. (2023)

  22. Liu, X., Wen, S., Zhao, J., Qiu, T.Z., Zhang, H.: Edge-assisted multi-robot visual-inertial slam with efficient communication. IEEE Trans. Autom. Sci. Eng. (2024)

  23. Kim, D.-H., Kim, J.-H.: Effective background model-based rgb-d dense visual odometry in a dynamic environment. IEEE Trans. Rob. 32(6), 1565–1573 (2016)

    Article  Google Scholar 

  24. Sun, Y., Liu, M., Meng, M.Q.-H.: Improving rgb-d slam in dynamic environments: a motion removal approach. Robot. Auton. Syst. 89, 110–122 (2017)

    Article  Google Scholar 

  25. Wang, R., Wan, W., Wang, Y., Di, K.: A new rgb-d slam method with moving object detection for dynamic indoor scenes. Remote Sens. 11(10), 1143 (2019)

    Article  Google Scholar 

  26. Weichen Dai, Yu., Zhang, P.L., Fang, Z., Scherer, S.: Rgb-d slam in dynamic environments using point correlations. IEEE Trans. Pattern Anal. Mach. Intell. 44(1), 373–389 (2020)

    Google Scholar 

  27. Sun, Y., Liu, M., Meng, M.Q.-H.: Motion removal for reliable rgb-d slam in dynamic environments. Robot. Auton. Syst. 108, 115–128 (2018)

    Article  Google Scholar 

  28. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

  29. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  30. Liu, Y., Miura, J.: Rds-slam: real-time dynamic slam using semantic segmentation methods. Ieee Access 9, 23772–23785 (2021)

  31. Wen, S., Tao, S., Liu, X., Babiarz, A., Richard, F.: Cd-slam: A real-time stereo visual-inertial slam for complex dynamic environments with semantic and geometric information. IEEE Trans. Instrum. Meas. (2024)

  32. Wen, S., Li, X., Liu, X., Li, J., Tao, S., Long, Y., Qiu, T.: Dynamic slam: a visual slam in outdoor dynamic scenes. IEEE Trans. Instrum. Meas. (2023)

  33. Howard, A., Sandler, M., Chu, G., Chen, L-C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V. et al.: Searching for mobilenetv3. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1314–1324 (2019)

  34. Kundu, A., Krishna, K.M., Sivaswamy, J.: Moving object detection by multi-view geometric techniques from a single camera mounted robot. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4306–4312. IEEE (2009)

  35. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of rgb-d slam systems. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 573–580. IEEE (2012)

Download references

Author information

Authors and Affiliations

Authors

Contributions

Q.S., W.L. and Y.B.L. conceived the idea of the study; Q.S., W.L. and Y.B.L. did the analyses; Q.S., W.L., J.J.Z., Z.Q.X. and Y.B.L. interpreted the results; all authors contributed to the writing and revisions.

Corresponding author

Correspondence to Yibing Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Liu, W., Zou, J. et al. GGC-SLAM: a VSLAM system based on predicted static probability of feature points in dynamic environments. SIViP (2024). https://doi.org/10.1007/s11760-024-03375-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11760-024-03375-y

Keywords

Navigation