Log in

Single-index composite quantile regression for ultra-high-dimensional data

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

Composite quantile regression (CQR) is a robust and efficient estimation method. This paper studies CQR method for single-index models with ultra-high-dimensional data. We propose a penalized CQR estimator for single-index models and combine the debiasing technique with the CQR method to construct an estimator that is asymptotically normal, which enables the construction of valid confidence intervals and hypothesis testing. Both simulations and data analysis are conducted to illustrate the finite sample performance of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Belloni A, Chernozhukov V, Kato K (2011) \(l_1\)-penalized quantile regression in high-dimensional sparse models. Ann Stat 39:82–130

    MATH  Google Scholar 

  • Belloni A, Chernozhukov V, Kato K (2013) Robust inference in high-dimensional approximately sparse quantile regression models. ar**v:1312.7186

  • Bradic J, Kolar M (2017) Uniform inference for high-dimensional quantile regression: linear functionals and regression rank scores. ar**v:1702.06209

  • Cai TT, Liu W, Luo X (2011) A constrained \(l_1\) minimization approach to sparse precision matrix estimation. J Am Stat Assoc 106:594–607

    Article  Google Scholar 

  • Chen X, Liu W, Mao X, Yang Z (2020) Distributed high-dimensional regression under a quantile loss function. J Mach Learn Res 21:1–43

    MathSciNet  MATH  Google Scholar 

  • Christou E, Akritas M (2016) Single index quantile regression for heteroscedastic data. J Multivar Anal 150:169–182

    Article  MathSciNet  Google Scholar 

  • Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 96:1348–1360

    Article  MathSciNet  Google Scholar 

  • Fan Y, Hardle WK, Wang W, Zhu L (2018) Single-index-based CoVaR with very high-dimensional covariates. J Bus Econ Stat 36:212–226

    Article  MathSciNet  Google Scholar 

  • Gueuning T, Claedkens G (2016) Confidence intervals for high-dimensional partially linear single-index models. J Multivar Anal 149:13–29

    Article  MathSciNet  Google Scholar 

  • Javanmard A, Montanari A (2014) Confidence intervals and hypothesis testing for high-dimensional regression. J Mach Learn Res 15:2869–2909

    MathSciNet  MATH  Google Scholar 

  • Jiang R, Qian WM, Zhou ZG (2016) Weighted composite quantile regression for single-index models. J Multivar Anal 148:34–48

    Article  MathSciNet  Google Scholar 

  • Jiang R, Yu KM (2020) Single-index composite quantile regression for massive data. J Multivar Anal 108:104669

    Article  MathSciNet  Google Scholar 

  • Kai B, Li R, Zou H (2010) Local composite quantile regression smoothing: an efficient and safe alternative to local polynomial regression. J Roy Stat Soc B 72:49–69

    Article  MathSciNet  Google Scholar 

  • Kai B, Li R, Zou H (2011) New efficient estimation and variable selection methods for semiparametric varying-coefficient partially linear models. Ann Stat 39:305–332

    Article  MathSciNet  Google Scholar 

  • Kraus D, Czado C (2017) D-vine copula based quantile regression. Comput Stat Data Anal 110:1–18

    Article  MathSciNet  Google Scholar 

  • Li X, Zhao T, Wang L, Yuan X, Liu H (2014) Flare: Family of lasso regression. R package version 1(2) http://CRAN.R-project.org/package=flare

  • Liang H, Liu X, Li RZ, Tsai CL (2010) Estimation and testing for partially linear single-index models. Ann Stat 6:3811–3836

    MathSciNet  MATH  Google Scholar 

  • Lv S, Lian H (2017) A debiased distributed estimation for sparse partially linear models in diverging dimensions. p ar**v:1708.05487

  • Neykov M, Liu JS, Cai T (2016) \(l_1\)-regularized least squares for support recovery of high dimensional single index models with Gaussian designs. J Mach Learn Res 17:1–37

    MATH  Google Scholar 

  • Pietrosanu M, Gao JY, Kong LL, Jiang B, Niu D (2021) Advanced algorithms for penalized quantile and composite quantile regression. Comput Stat 36:333–346

    Article  MathSciNet  Google Scholar 

  • Plan Y, Vershynin R (2016) The gengeralized lasso with non-linear observations. IEEE Trans Inf Theory 62:1528–1537

    Article  Google Scholar 

  • Radchenko P (2015) High dimensional single index models. J Multivar Anal 139:266–282

    Article  MathSciNet  Google Scholar 

  • Tang L, Zhou Z (2015) Weighted local linear cqr for varying-coefficient models with missing covariates. TEST 24:583–604

    Article  MathSciNet  Google Scholar 

  • Tian Y, Zhu Q, Tian M (2016) Estimation of linear composite quantile regression using EM algorithm. Statist Probab Lett 117:183–191

    Article  MathSciNet  Google Scholar 

  • Tibshirani RJ (1996) Regression shrinkage and selection via the lasso. J Roy Stat Soc B 58:267–288

    MathSciNet  MATH  Google Scholar 

  • van de Geer S, Bühlmann P, Ritov Y, Dezeure R (2014) On asymptotically optimal confidence regions and tests for high dimensional models. Ann Stat 42:1166–1202

    MathSciNet  MATH  Google Scholar 

  • Wu TZ, Yu K, Yu Y (2010) Single-index quantile regression. J Multivar Anal 101:1607–1621

    Article  MathSciNet  Google Scholar 

  • **a YC, Hardle WK (2006) Semi-parametric estimation of partially linear single-index models. J Multivar Anal 97:1162–1184

    Article  MathSciNet  Google Scholar 

  • Zhang X, Cheng G (2017) Simulaneous inference for high-dimensional linear models. J Am Stat Assoc 112:757–768

    Article  Google Scholar 

  • Zhang YK, Lian H, Yu Y (2017) Estimation and variable selection for quantile partially linear single-index models. J Multivar Anal 162:215–234

    Article  MathSciNet  Google Scholar 

  • Zhang CH, Zhang SS (2014) Confidence intervals for low dimensional parameters with high-dimensional data. J Roy Stat Soc B 76:217–242

    Article  Google Scholar 

  • Zhang YK, Lian H, Yu Y (2020) Ultra-high dimensional single-index quantile regression. J Mach Learn Res 21:1–25

    MathSciNet  MATH  Google Scholar 

  • Zhao P, Yu B (2006) On model selection consistency of lasso. J Mach Learn Res 7:2541–2563

    MathSciNet  MATH  Google Scholar 

  • Zhao T, Kolar M, Liu H (2015) A general framework for robust testing and confidence regions in high-dimensional quantile regression. ar**v:1412.8724

  • Zhao WH, Lian H, Liang H (2017) Quantile regression for the single-index coefficient model. Bernoulli 23:1997–2027

    MathSciNet  MATH  Google Scholar 

  • Zhu Y, Yu Z, Cheng G (2019) High dimensional inference in partially linear models. In: Proceedings of Machine Learning Research, pp. 2760–2769

  • Zou H (2006) The adaptive LASSO and its oracle properties. J Am Stat Assoc 101:1418–1429

    Article  MathSciNet  Google Scholar 

  • Zou H, Yuan M (2008) Composite quantile regression and the oracle model selection theory. Ann Stat 36:1108–1126

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge support for this project from the National Natural Science Foundation of China (No. 11801069) and the Fundamental Research Funds for the Central Universities of China (No. 2232020D-43).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material

Detailed proofs of lemmas and theorems are given in the supplementary material file. (pdf 101KB)

Appendices

A Conditions

To establish the asymptotic properties of the proposed estimators, the following technical conditions are imposed.

C1. The kernel \(K(\cdot )\) is a symmetric density function with bounded support and Lipschitz continuous second-order derivative.

C2. The density function of \(\mathbf{U}=\mathbf{X}^{\top }{\gamma }\) is positive and uniformly continuous for \({\gamma }\) in a neighborhood of \({\gamma }_{0}\). Further the density of \(\mathbf{X}^{\top }{\gamma }_{0}\) is continuous and bounded away from 0 and \(\infty \) on its support.

C3. The function \(g_{0}(\cdot )\) has a continuous and bounded second derivative.

C4. Assume that the model error \(\varepsilon \) has a positive density \(f(\cdot )\), that is \(\sup _{t\in R}f(t)\le C_{f}\) and \(\min _{k\in \{1,\ldots ,K\}}f(c_k)\ge C_{f_k}\), for some constants \(C_{f}\) and \(C_{f_k}\). Moreover, \(f(\cdot )\) is differentiable with the first order derivative uniformly bounded by a positive constant \(C_{f'}\).

C5. \(\max _{1\le j\le p}{} \mathbf{S}_{jj}\le C_x\), for a constant \(C_x\).

C6. For a constant \(C_{\lambda }\), the matrix \(\mathbf{S}\) satisfies \( C_{\lambda }=\inf _{\theta \in A,\theta \ne \mathbf{0}}\frac{\theta ^{\top }{} \mathbf{S}\theta }{\theta ^{\top }\theta }, \) where \(A=\{\theta \in R^p: \Vert \theta _{T^c}\Vert _1 \le 3\Vert \theta _T\Vert _1\}\), and \(T=\{j\in (1,\ldots ,p):\gamma _{0,j}\ne 0 \}\) to be the true support of \(\gamma _0\).

C7. There exists a constant \(C_{\psi }\) such that \(\psi (n/\log (p\vee n))\le C_{\psi }\) with probability intend to 1, where

$$\begin{aligned} \psi (q)=\sup _{\Vert \theta \Vert _0\le q,\theta \ne \mathbf{0}} \frac{ \theta ^{\top }{} \mathbf{S}\theta }{\Vert \theta \Vert _2^2}. \end{aligned}$$

Remark 1

Conditions C1C4 are standard conditions, which are commonly used in single-index regression model, see Wu et al. (2010) and Jiang et al. (2016). Conditions C5C7 are used for high-dimensional data. Condition C5 is used in van de Geer et al. (2014). Conditions C6C7 are the restricted eigenvalue, see condition D4 in Belloni et al. (2011).

B Proof of main results

Lemma 1

Suppose C1C5 hold. Then for the choice \(\lambda \ge 2CK\sqrt{C_x}\sqrt{(\log p)/n}\), we have with probability at least \(1-2Kp^{1-C^2}-\delta _n\) that

$$\begin{aligned} \Vert {\hat{\gamma }}_{T^c}\Vert _1\le 3\Vert ({\hat{\gamma }}-\gamma _0)_{T}\Vert _1. \end{aligned}$$

Lemma 2

Suppose C1C6 hold and \(p>3\). Then, we have with probability at least \(1-6p^{1-C^2}-3\delta _n\) that

$$\begin{aligned}&\sup _{\theta \in A,\Vert \theta \Vert _\mathbf{S}\le \xi }\left| \frac{1}{n}\sum _{i=1}^n\sum _{k=1}^K\left\{ {\tilde{L}}_{i,k}(\gamma _0+\theta ) -{\tilde{L}}_{i,k}(\gamma _0)\right\} -\frac{1}{n}\sum _{i=1}^n\sum _{k=1}^KE\left\{ {\tilde{L}}_{i,k}(\gamma _0+\theta ) -{\tilde{L}}_{i,k}(\gamma _0)\right\} \right| \\&\qquad \quad \le C_BK\xi \sqrt{\frac{s\log p}{n}}, \end{aligned}$$

where \(A= \{\gamma \in R^p: \Vert {\hat{\gamma }}_{T^c}\Vert _1 \le 3\Vert ({\hat{\gamma }}-\gamma _0)_T\Vert _1\}\) and \(C_B=\max \{\sqrt{12},64\sqrt{2}CC_{\lambda }^{-1/2}\sqrt{C_x} \}\).

Lemma 3

Suppose that condition C4 holds and that \( \max _{1\le k\le K}\sup _{|\tau -\tau _k|\le {\tilde{h}}}|Q'''(\tau )|=O(1), \) where \(Q'''(\tau )\) is the cubic derivative of the \(\tau \)-quantile of the error. Then, with the choice of the bandwidth \({\tilde{h}}=\left( s\log \left( p\vee n\right) /{n} \right) ^{1/6}\), we have

$$\begin{aligned} \left| {\hat{\theta }}_K-{\theta }_K\right| =O_p\left( \left( \frac{s\log \left( p\vee n\right) }{n} \right) ^{1/3} \right) . \end{aligned}$$

Proof of Theorem 2.1

Define \(\pi _2=\left\{ {\hat{\gamma }}- \gamma _0\in A \right\} \), where A is defined in Lemma 2 and

$$\begin{aligned} \begin{aligned} \pi _3=\bigg \{&\sup _{\theta \in A,\Vert \theta \Vert _\mathbf{S}\le \xi }\left| \frac{1}{n}\sum _{i=1}^n\sum _{k=1}^K\left\{ {\tilde{L}}_{i,k}(\gamma _0+\theta ) -{\tilde{L}}_{i,k}(\gamma _0)\right\} -\frac{1}{n}\sum _{i=1}^n\sum _{k=1}^KE\left\{ {\tilde{L}}_{i,k}(\gamma _0+\theta ) -{\tilde{L}}_{i,k}(\gamma _0)\right\} \right| \\&\le C_BK\xi \sqrt{\frac{s\log p}{n}}\bigg \}. \end{aligned} \end{aligned}$$

By Lemma 1 and Lemma 2, when \(\lambda \ge 2CK\sqrt{C_x}\sqrt{(\log p)/n}\), we have

$$\begin{aligned} P(\pi _2^c\cup \pi _3^c)\le P(\pi _2^c)+P(\pi _3^c)\le 2Kp^{1-C^2}+6p^{1-C^2}+4\delta _n. \end{aligned}$$

The following derivations are based on the condition that events \(\pi _2\) and \(\pi _3\) hold. Let \(\xi =\Vert {\hat{\gamma }}- \gamma _0\Vert _\mathbf{S}\). By optimality condition, we have

$$\begin{aligned} \begin{aligned} \frac{1}{n}\sum _{i=1}^n\sum _{k=1}^K{\tilde{L}}_{i,k}({\hat{\gamma }})-\frac{1}{n}\sum _{i=1}^n \sum _{k=1}^K{\tilde{L}}_{i,k}(\gamma _0) -\lambda \left( \Vert \gamma _0\Vert _1 - \Vert {\hat{\gamma }}\Vert _1 \right) \le 0. \end{aligned} \end{aligned}$$
(B.1)

On the events \(\pi _2\) and \(\pi _3\),

$$\begin{aligned} \left| \frac{1}{n}\sum _{i=1}^n\sum _{k=1}^K\left\{ {\tilde{L}}_{i,k}({\hat{\gamma }}) -{\tilde{L}}_{i,k}(\gamma _0)\right\} -\frac{1}{n}\sum _{i=1}^n\sum _{k=1}^KE\left\{ {\tilde{L}}_{i,k}({\hat{\gamma }}) -{\tilde{L}}_{i,k}(\gamma _0)\right\} \right| \le C_BK\xi \sqrt{\frac{s\log p}{n}}. \end{aligned}$$

So it follows that

$$\begin{aligned} \begin{aligned} \frac{1}{n}\sum _{i=1}^n\sum _{k=1}^K\left\{ {\tilde{L}}_{i,k}({\hat{\gamma }}) -{\tilde{L}}_{i,k}(\gamma _0)\right\} \ge \frac{1}{2}\sum _{k=1}^Kf(c_k)\Vert {\hat{\gamma }}- \gamma _0\Vert _\mathbf{S}^2-C_BK\xi \sqrt{\frac{s\log p}{n}}. \end{aligned} \end{aligned}$$
(B.2)

Furthermore, as

$$\begin{aligned} \xi ^2=\Vert {\hat{\gamma }}- \gamma _0\Vert _\mathbf{S}^2=({\hat{\gamma }}- \gamma _0)^{\top }{} \mathbf{S}({\hat{\gamma }}-\gamma _0) \ge C_{\lambda }\Vert {\hat{\gamma }}- \gamma _0\Vert _2^2. \end{aligned}$$

Thus, \(\Vert {\hat{\gamma }}- \gamma _0\Vert _2\le C_{\lambda }^{-1/2}\xi \). Therefore, on the event \(\pi _2\), it holds that,

$$\begin{aligned} \begin{aligned}&\big \Vert \gamma _0\big \Vert _1-\big \Vert {\hat{\gamma }}\big \Vert _1\le \big \Vert {\hat{\gamma }}- \gamma _0\big \Vert _1=\big \Vert ({\hat{\gamma }}-\gamma _0)_T\big \Vert _1+\big \Vert ({\hat{\gamma }}- \gamma _0)_{T^c}\big \Vert _1\\&\quad \le 4\big \Vert ({\hat{\gamma }}- \gamma _0)_T\big \Vert _1\le 4\sqrt{s}\big \Vert {\hat{\gamma }}- \gamma _0\big \Vert _2 \le 4C^{-1/2}_{\lambda }\sqrt{s}\xi . \end{aligned} \end{aligned}$$
(B.3)

Then, by (B.1)–(B.3), we get

$$\begin{aligned} \frac{1}{2}\sum _{k=1}^Kf(c_k)\xi ^2-C_BK\xi \sqrt{\frac{s\log p}{n}}-4\lambda C^{-1/2}_{\lambda }\sqrt{s}\xi \le 0. \end{aligned}$$

As \(\lambda \ge 2CK\sqrt{C_x}\sqrt{(\log p)/n}\), we can obtain

$$\begin{aligned} \begin{aligned} \Vert {\hat{\gamma }}- \gamma _0\Vert _\mathbf{S}&=\xi \le C_A\sqrt{\frac{s\log p}{n}},\\ \Vert {\hat{\gamma }}- \gamma _0\Vert _2&\le C_{\lambda }^{-1/2}\xi \le C_AC_{\lambda }^{-1/2}\sqrt{\frac{s\log p}{n}}, \end{aligned} \end{aligned}$$

where \(C_A=2C_BC_{f_k}^{-1}+8CC_{f_k}^{-1}\sqrt{C_{x}}C_{\lambda }^{-1/2}\). \(\square \)

Proof of Theorem 3.1

By (3.1), we have

$$\begin{aligned} \begin{aligned} \sqrt{n}(\hat{{\gamma }}_d-{\gamma }_0)&= \sqrt{n}(\hat{{\gamma }}-{\gamma }_0)- \sqrt{n}\hat{\mathbf{\varSigma }}\hat{\mathbf{M}} = \sqrt{n}(\hat{{\gamma }}-{\gamma }_0)- \sqrt{n}{\hat{\theta }}_K^{-1}{} \mathbf{D}\hat{\mathbf{M}}\\&= \sqrt{n}(\hat{{\gamma }}-{\gamma }_0)-{\theta }_K^{-1}\sqrt{n}{} \mathbf{D}\hat{\mathbf{M}} -({\hat{\theta }}_K^{-1}-{\theta }_K^{-1})\sqrt{n}{} \mathbf{D}\hat{\mathbf{M}}. \end{aligned} \end{aligned}$$
(B.4)

Note that \({H}_{\tau _k}(\mathbf{X}^{\top }_i{{\gamma }}_0 )=c_k+g_0(\mathbf{X}^{\top }_i{{\gamma }}_0 )\), we have

$$\begin{aligned} \begin{aligned} \sqrt{n}{} \mathbf{D}\hat{\mathbf{M}}&=\mathbf{D}\frac{1}{\sqrt{n}}\sum _{i=1}^n \sum _{k=1}^K\left\{ {\hat{H}}'(\mathbf{X}^{\top }_{i}{\hat{{\gamma }}} )\right\} ^{\top }\left[ I\left\{ Y_i\le {\hat{H}}_{\tau _k}(\mathbf{X}^{\top }_i\hat{{\gamma }} )\right\} - {\tau _k} \right] \\&=\mathbf{D}\frac{1}{\sqrt{n}}\sum _{i=1}^n \sum _{k=1}^K\left\{ {\hat{H}}'(\mathbf{X}^{\top }_{i}{\hat{{\gamma }}} )\right\} ^{\top }\left[ I\left\{ \varepsilon _i\le {\hat{H}}_{\tau _k}(\mathbf{X}^{\top }_i\hat{{\gamma }} )-{H}_{\tau _k}(\mathbf{X}^{\top }_i{{\gamma }}_0 )+c_k\right\} - {\tau _k}\right] \\&=\mathbf{D}\frac{1}{\sqrt{n}}\sum _{i=1}^n \sum _{k=1}^K\left\{ {\hat{H}}'(\mathbf{X}^{\top }_{i}{\hat{{\gamma }}} )\right\} ^{\top }\left\{ I\left( \varepsilon _i\le c_k\right) - {\tau _k}\right\} \\&\quad +\mathbf{D}\frac{1}{\sqrt{n}}\sum _{i=1}^n \sum _{k=1}^K\left\{ {\hat{H}}'(\mathbf{X}^{\top }_{i}{\hat{{\gamma }}} )\right\} ^{\top }\left[ I\left\{ \varepsilon _i\le {\hat{H}}_{\tau _k}(\mathbf{X}^{\top }_i\hat{{\gamma }} )-{H}_{\tau _k}(\mathbf{X}^{\top }_i{{\gamma }}_0 )+c_k\right\} - I\left( \varepsilon _i\le c_k\right) \right] \\&\equiv \mathbf{T}_1+\mathbf{T}_2. \end{aligned} \end{aligned}$$
(B.5)

Thus, by (B.4) and (B.5), we have

$$\begin{aligned} \begin{aligned} \sqrt{n}(\hat{{\gamma }}_d-{\gamma }_0)= \sqrt{n}(\hat{{\gamma }}-{\gamma }_0)-{\theta }_K^{-1}\mathbf{T}_1-{\theta }_K^{-1}{} \mathbf{T}_2 -({\hat{\theta }}_K^{-1}-{\theta }_K^{-1})\sqrt{n}{} \mathbf{D}\hat{\mathbf{M}}. \end{aligned} \end{aligned}$$
(B.6)

We can proof that

$$\begin{aligned} \begin{aligned}&{\theta }_K^{-1}{} \mathbf{T}_1|\mathbf{U}\sim N\left( \mathbf{0},R\mathbf{D}{\hat{\mathbf{S}}}{} \mathbf{D}^{\top }\right) ,\\&{\theta }_K^{-1}{} \mathbf{T}_2=\mathbf{D} \hat{\mathbf{S}}\sqrt{n}(\hat{{\gamma }}-{{\gamma }}_0)+o_p(1),\\&\left\| ({\hat{\theta }}_K^{-1}-{\theta }_K^{-1})\sqrt{n}\mathbf{D}\hat{\mathbf{M}}\right\| _{\infty }=o_p(1), \end{aligned} \end{aligned}$$
(B.7)

where \(R=\theta _K^{-2}\sum _{k=1}^{K}\sum _{k'=1}^{K}\tau _{kk'}\). Then, by (B.6) and (B.7), and condition \(\alpha _1s\sqrt{\log p}=o(1)\),

$$\begin{aligned} \begin{aligned} \sqrt{n}(\hat{{\gamma }}_d-{\gamma }_0)&= \sqrt{n}(\hat{{\gamma }}-{\gamma }_0)-{\theta }_K^{-1}\mathbf{T}_1-\mathbf{D} \hat{\mathbf{S}}\sqrt{n}(\hat{{\gamma }}-{{\gamma }}_0)+o_p(1)\\&= -{\theta }_K^{-1}{} \mathbf{T}_1-\left( \mathbf{D} \hat{\mathbf{S}}-\mathbf{I}\right) \sqrt{n}(\hat{{\gamma }}-{{\gamma }}_0)+o_p(1)\\&= -{\theta }_K^{-1}{} \mathbf{T}_1-O_p(\alpha _1s\sqrt{\log p})+o_p(1)\\&= -{\theta }_K^{-1}{} \mathbf{T}_1+o_p(1). \end{aligned} \end{aligned}$$
(B.8)

By (B.8), we have

$$\begin{aligned} \frac{\sqrt{n}\left( \hat{{\gamma }}_{d,j}-{\gamma }_{0,j} \right) }{\left( {\hat{R}}{\hat{\mathbf{d}}}_j{\hat{\mathbf{S}}}{\hat{\mathbf{d}}}_j^{\top }\right) ^{1/2}} =\frac{-{\theta }_K^{-1}{} \mathbf{T}_{1,j}}{\left( {\hat{R}}{\hat{\mathbf{d}}}_j{\hat{\mathbf{S}}}{\hat{\mathbf{d}}}_j^{\top }\right) ^{1/2}} +\frac{o_p(1)}{\left( {\hat{R}}{\hat{\mathbf{d}}}_j{\hat{\mathbf{S}}}{\hat{\mathbf{d}}}_j^{\top }\right) ^{1/2}}. \end{aligned}$$

By the proof of Theorem 3 in Jiang et al. (2016) and condition C4, we can obtain

$$\begin{aligned} {\hat{R}}^{-1}\le 2(K+1)\left\{ \sum _{k=1}^Kf^2(c_k)- \sum _{k=1}^Kf(c_k) f(c_{k+1}) \right\} ^2\le 2K^2(K+1)C^4_{f}. \end{aligned}$$

By Lemma 3.1 in Javanmard and Montanari (2014), we have

$$\begin{aligned} {\hat{\mathbf{d}}_j}{\hat{\mathbf{S}}}{\hat{\mathbf{d}}_j}^{\top }\ge {(1-\alpha _1)^2}/{{\hat{\mathbf{S}}}_{jj}}, \end{aligned}$$

and based on condition C5, with probability tending to 1, we have \({\hat{\mathbf{S}}}_{jj}\le 2C_x\) for all \(j\in \{1,\ldots ,p\}\). Then, we have with probability tending to 1 that

$$\begin{aligned} {\left( {\hat{R}}_1{\hat{\mathbf{d}}_j}{\hat{\mathbf{S}}}{\hat{\mathbf{d}}_j}^{\top }\right) ^{-1/2}} \le \frac{2C_xC^2_{f}\sqrt{2K^2(K+1)}}{(1-\alpha _1)^2}. \end{aligned}$$

Hence, with condition \(\alpha _1s\sqrt{\log p}=o(1)\), for any \(j\in \{1,\ldots ,p\}\),

$$\begin{aligned} \left( {\hat{R}}{\hat{\mathbf{d}}_j}^{\top }{\hat{\mathbf{S}}}{\hat{\mathbf{d}}_j}\right) ^{-1/2}\sqrt{n}\left( \hat{{\gamma }}_{d,j}-{\gamma }_{0,j} \right) \xrightarrow {L} N(0,1). \end{aligned}$$

which concludes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, R., Sun, M. Single-index composite quantile regression for ultra-high-dimensional data. TEST 31, 443–460 (2022). https://doi.org/10.1007/s11749-021-00785-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-021-00785-9

Keywords

Mathematics Subject Classification

Navigation