Log in

Assessment of the preventive effect of vermicompost on salinity resistance in tomato (Solanum lycopersicum cv. Ailsa Craig)

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

To determine the effects of vermicompost leachate (VCL) on resistance to salt stress in plants, young tomato seedlings (Solanum lycopersicum, cv. Ailsa Craig) were exposed to salinity (150 mM NaCl addition to nutrient solution) for 7 days after or during 6 mL L− 1 VCL application. Salt stress significantly decreased leaf fresh and dry weights, reduced leaf water content, significantly increased root and leaf Na+ concentrations, and decreased K+ concentrations. Salt stress decreased stomatal conductance (gs), net photosynthesis (A), instantaneous transpiration (E), maximal efficiency of PSII photochemistry in the dark-adapted state (Fv/Fm), photochemical quenching (qP), and actual PSII photochemical efficiency (ΦPSII). VCL applied during salt stress increased leaf fresh weight and gs, but did not reduce leaf osmotic potential, despite increased proline content in salt-treated plants. VCL reduced Na+ concentrations in leaves (by 21.4%), but increased them in roots (by 16.9%). VCL pre-treatment followed by salt stress was more efficient than VCL concomitant to salt stress, since VCL pre-treatment provided the greatest osmotic adjustment recorded, with maintenance of net photosynthesis and K+/Na+ ratios following salt stress. VCL pre-treatment also led to the highest proline content in leaves (50 µmol g− 1 FW) and the highest sugar content in roots (9.2 µmol g− 1 FW). Fluorescence-related parameters confirmed that VCL pre-treatment of salt-stressed plants showed higher PSII stability and efficiency compared to plants under concomitant VCL and salt stress. Therefore, VCL represents an efficient protective agent for improvement of salt-stress resistance in tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptative mechanisms. Agronomy 7:18

    Article  CAS  Google Scholar 

  • Arancon NQ, Pant A, Radovich T, Hue NV, Potter JK, Converse CE (2012) Seed germination and seedling growth of tomato and lettuce as affected by vermicompost water extracts (teas). HortScience 47:1722–1728

    Google Scholar 

  • Aremu AO, Stirk WA, Kulkarni MG, Tarkowská D, Turečková V, Gruz J, Šubrtová M, Pěnčik A, Novák O, Doležal K, Strnad M, Van Staden J (2015) Evidence of phytohormones and phenolic acids variability in garden-waste-derived vermicompost leachate, a well-known plant growth stimulant. Plant Growth Regul 75:483–492

    Article  CAS  Google Scholar 

  • Arthur GD, Aremu AO, Kulmarni MG, Van Staden J (2012) Vermicompost leachate alleviates deficiency of phosphorus and potassium in tomato seedlings. HortScience 47:1304–1307

    Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Azarmi R, Torabi Giglou T, Taleshmikail RD (2008) Influence of vermicompost on soil chemical and physical properties in tomato (Lycopersicum esculentum) field. Afr J Biotechnol 7:2397–2401

    CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Benhebil M (2015) Approche à la Caractérisation de la Lombriculture. MSc Thesis, University of Blida, Algeria

  • Bidabadi SS, Afazel M, Poodeh SD (2016) The effect of vermicompost leachate on morphological, physiological and biochemical indices of Stevia rebaudiana Bertoni in a soiless culture sustem. Int J Recycl Org Waste Agric 5:251–262

    Article  Google Scholar 

  • Calderín García A, Azevedo Santos L, Guridi Izquierdo F, Marcos Rumjanek V, Noa Castro R, Soares dos Santos F, Ambrosio de Souza LG, Louro Berbara RL (2014) Potentialities of vermicompost humic acids to alleviates water stress in rice plants (Oryza sativa L.). J Geochem Explor 136:48–54

    Article  CAS  Google Scholar 

  • Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41

    Article  CAS  Google Scholar 

  • Canellas LP, Olivares FL, Okorokova-Façanha AL, Façanha AR (2002) Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence and plasma membrane H+-ATPase activity in maize roots. Plant Physiol 130:1951–1957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chinsamy M, Kulkarni MG, Van Staden J (2013) Garden-waste-vermicompost leachate alleviates salinity stress in tomato seedlings by mobilizing salt tolerance mechanisms. Plant Growth Regul 71:41–47

    Article  CAS  Google Scholar 

  • Chinsamy M, Kulkarni MG, Van Staden J (2014) Vermicompost leachate reduces temperature and water stress effects in tomato seedlings. HortScience 49:1183–1187

    Google Scholar 

  • Cuartero J, Bolarín MC, Asíns MJ, Moreno V (2006) Increasing salt tolerance in the tomato. J Exp Bot 57:1045–1058

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ (2004) Improving salt tolerance. J Exp Bot 55:307–319

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ, Yeo AR (1995) Breeding for salinity resistance in crop plants: where next? Aust J Plant Physiol 22:875–884

    Article  Google Scholar 

  • Gharbi E, Martínez JP, Benahmed H, Hichri I, Dobrev PI, Motyka V, Quinet M, Lutts S (2017) Phytohormone profiling in relation to osmotic adjustment in NaCl-treated plants of the halophyte tomato wild relative species Solanum chilense comparatively to the cultivated glycophyte Solanum lycopersicum. Plant Sci 258:77–89

    Article  PubMed  CAS  Google Scholar 

  • Gutiérrez-Miceli FA, Santiago-Borraz J, Montes Molina JA, Nafate CC, Abud-Archila M, Oliva Llaven MA, Rincón-Rosales R, Dendooven L (2007) Vermicompost as a soil supplemenr to improve growth, yield and fruit quality of tomato (Lycoperscum esculentum). Bioresour Technol 98:2781–2786

    Article  PubMed  CAS  Google Scholar 

  • Haghighi M, Barzegar MR, Teixeira da Silva JA (2016) The effect of municipal solid waste compost, peat, perlite and vermicompost on tomato (Lycopersicum esculentum L.) growth and yield in a hydrpoponic system. Int J Recycl Waste Agric 5:231–242

    Article  Google Scholar 

  • Hamamoto S, Horie T, Hauser F, Deinlein U, Schroeder JI, Uozumi N (2015) HKT transporters mediate salt stress resistance in plants: from structure and function to the field. Curr Opin Biotechnol 32:113–120

    Article  PubMed  CAS  Google Scholar 

  • Hou M, Zhu L, ** Q (2016) Surface drainage and mulching drip-irrigated tomatoes reduces soil salinity and improves fruit yield. PLoS One 11:e0154799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jabeen N, Ahmad R (2017) Growth response and nitrogen metabolism of sunflower (Helianthus annuus L.) to vermicompost and biogas slurry under salinity stress. J Plant Nutr 40:104–114

    Article  CAS  Google Scholar 

  • Joshi R, Singh J, Vig AP (2014) Vermicompost as an effective organic fertilizer and biocontrol agent: effect on growth, yield and quality of plants. Rev Environ Sci Biotechnol 14:137–159

    Article  CAS  Google Scholar 

  • Lutts S, Bouharmont J, Kinet JM (1999) Physiological characterization of salt-resistant rice somaclones. Aust J Bot 47:835–849

    Article  Google Scholar 

  • Martinez-Balmori D, Spaccii R, Aguiar NO, Novotny EH, Olivares FL, Canellas LP (2014) Molecular charactetristics of humic acids isolated from vermicomposts and their relationship to bioactivity. Agric Food Chem 62:11412–11419

    Article  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  PubMed  CAS  Google Scholar 

  • Mengistu T, Gebrekidan H, Kibret K, Woldetsadik K, Shimelis B, Yadav H (2017) The integrated use of excreta-based vermicompost and inorganic NP fertilize on tomato (Solanum lycopersicum L.) fruit yield, quality and soil fertility. Int J Recycl Org Waste Agric 6:63–77

    Article  Google Scholar 

  • Motallebi A (2015) The impact of vermicompost on tomato morphological and physiological characteristics. Biosci Biotechnol Res Asia 12:247–252

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Ndegwa PM, Thompson SA (2001) Integrating composting and vermicomposting in the treatment and bioconversion of biosolids. Bioresour Technol 76:107–112

    Article  PubMed  CAS  Google Scholar 

  • Pizzeghello D, Francioso O, Ertani A, Muscolo A, Nardi S (2013) Isopentenyladenosine and cytokinin-like activity of different humic substances. J Geochem Explor 129:70–75

    Article  CAS  Google Scholar 

  • Quaggiotti S, Ruperti B, Pizzeghello D, Francioso O, Tugnoli V, Nardi S (2004) Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays L.). J Exp Bot 55:803–813

    Article  PubMed  CAS  Google Scholar 

  • Romero-Aranda R, Soria T, Cuartero J (2001) Tomato plant–water uptake and plant–water relationships under saline growth conditions. Plant Sci 160:265–272

    Article  PubMed  CAS  Google Scholar 

  • Singh BK, Pathak KA, Boopathi T, Deka BC (2010) Vermicompost and NPK fertilizer effects on morpho-physiological traits of plants, yield and quality of tomato fruits (Solanum lycopersicum L.). Veg Crop Res Bull 73:77–86

    Google Scholar 

  • Vandoorne B, Mathieu AS, Van den Ende W, Vergauwen R, Périlleux C, Javaux M, Lutts S (2012) Water stress drastically reduces root growth and inulin yield in Cichorium intybus (var. sativum) independently of photosynthesis. J Exp Bot 63:4359–4372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • **ao Z, Liu M, Jiang L, Chen X, Griffiths BS, Li H, Hu F (2016) Vermicompost increases defense against root-knot nematode (Meloidogyne incognita) in tomato plants. Appl Soil Ecol 105:177–186

    Article  Google Scholar 

  • Xu L, Yan D, Ren X, Wei Y, Zhou J, Zhao H, Liang M (2016) Vermicompost improves the physiological and biochemical responses of blessed thistle (Silybum marianum Gaertn.) and peppermint (Mentha haplocalyx Briq) to salinity. Ind Crop Prod 94:574–585

    Article  CAS  Google Scholar 

  • Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH (2017) Biostimulants in plant science: a global perspective. Front Plant Sci 7:2049

    Article  PubMed  PubMed Central  Google Scholar 

  • Yemm EW, Willis J (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57:508–514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zaller JG (2007) Vermicompost as a substitute for peat in potting media: effects on germination, biomass allocation, yields and fruit quality of three tomato varieties. Sci Hort 112:191–199

    Article  Google Scholar 

  • Zhang H, Tan SN, Teo CH, Yew YR, Ge L, Chen X, Yong JWH (2015) Analysis of phytohormones in vermicompost using a novel combinative sample preparation strategy of ultrasound-assisted extraction and solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry. Talanta 139:189–197

    Article  PubMed  CAS  Google Scholar 

  • Žižková E, Dobrev PI, Muhovski Y, Hošek P, Hoyerová K, Haisel D, Procházková D, Lutts S, Motyka V, Hichri I (2015) Tomato (Solanum lycopersicum L.) SlIPT3 and SlIPT4 isopentenyltransferases mediate salt stress response in tomato. BMC Plant Biol 15:85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zucco MA, Walters SA, Chong SK, Klubek BP, Masabni JG (2015) Effect of soil type and vermicompost applications on tomato growth. Int J Recycl Org Waste Agric 4:135–141

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to University of Blida for a travel grant for S.B., and to Brigitte Vanpee for valuable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley Lutts.

Additional information

Communicated by M Horbowicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benazzouk, S., Djazouli, ZE. & Lutts, S. Assessment of the preventive effect of vermicompost on salinity resistance in tomato (Solanum lycopersicum cv. Ailsa Craig). Acta Physiol Plant 40, 121 (2018). https://doi.org/10.1007/s11738-018-2696-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-018-2696-6

Keywords

Navigation