Log in

Slope stability analysis based on big data and convolutional neural network

  • Research Article
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

The Limit Equilibrium Method (LEM) is commonly used in traditional slope stability analyses, but it is time-consuming and complicated. Due to its complexity and nonlinearity involved in the evaluation process, it cannot provide a quick stability estimation when facing a large number of slopes. In this case, the convolutional neural network (CNN) provides a better alternative. A CNN model can process data quickly and complete a large amount of data analysis in a specific situation, while it needs a large number of training samples. It is difficult to get enough slope data samples in practical engineering. This study proposes a slope database generation method based on the LEM. Samples were amplified from 40 typical slopes, and a sample database consisting of 20000 slope samples was established. The sample database for slopes covered a wide range of slope geometries and soil layers’ physical and mechanical properties. The CNN trained with this sample database was then applied to the stability prediction of 15 real slopes to test the accuracy of the CNN model. The results show that the slope stability prediction method based on the CNN does not need complex calculation but only needs to provide the slope coordinate information and physical and mechanical parameters of the soil layers, and it can quickly obtain the safety factor and stability state of the slopes. Moreover, the prediction accuracy of the CNN trained by the sample database for slope stability analysis reaches more than 99%, and the comparisons with the BP neural network show that the CNN has significant superiority in slope stability evaluation. Therefore, the CNN can predict the safety factor of real slopes. In particular, the combination of typical actual slopes and generated slope data provides enough training and testing samples for the CNN, which improves the prediction speed and practicability of the CNN-based evaluation method in engineering practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Komadja G C, Pradhan S P, Roul A R, Adebayo B, Habinshuti J B, Glodji L A, Onwualu A P. Assessment of stability of a Himalayan road cut slope with varying degrees of weathering: A finite-element-model-based approach. Heliyon, 2020, 6(11): e05297

    Article  Google Scholar 

  2. Pradhan S P, Siddique T. Stability assessment of landslide-prone road cut rock slopes in Himalayan terrain: A finite element method based approach. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12: 63–77

    Article  Google Scholar 

  3. Liu S Y, Shao L T, Li H J. Slope stability analysis using the limit equilibrium method and two finite element methods. Computers and Geotechnics, 2015, 63: 291–298

    Article  Google Scholar 

  4. Agam M W, Hashim M H M, Murad M I, Zabidi H. Slope sensitivity analysis using spencer’s method in comparison with general limit equilibrium method. Procedia Chemistry, 2016, 19: 651–658

    Article  Google Scholar 

  5. Firincioglu B S, Ercanoglu M. Insights and perspectives into the limit equilibrium method from 2D and 3D analyses. Engineering Geology, 2021, 281: 105968

    Article  Google Scholar 

  6. Liu J, Li J, Huo J Y, Liu L N. Application of improved artificial fish swarm algorithm to slope stability analysis. Advanced Materials Research, 2012, 12: 1861–1866

    Article  Google Scholar 

  7. Ji J, Zhang W, Zhang F, Gao Y, Lu Q. Reliability analysis on permanent displacement of earth slopes using the simplified bishop method. Computers and Geotechnics, 2020, 117: 103286

    Article  Google Scholar 

  8. Agam M W, Hashim M H M, Murad M I, Zabidi H. Slope sensitivity analysis using spencer’s method in comparison with general limit equilibrium method. Procedia Chemistry, 2016, 19: 651–658

    Article  Google Scholar 

  9. Li R J, Xu Q, Zheng W, Lin H C. The stability analyses of unsaturated slope based on the sarma method. Advanced Materials Research, 2012, 393: 1569–1573

    Google Scholar 

  10. Zhou X P, Cheng H. Stability analysis of three-dimensional seismic landslides using the rigorous limit equilibrium method. Engineering Geology, 2014, 174: 87–102

    Article  Google Scholar 

  11. Zheng Y, Chen C, Meng F, Liu T, **a K. Assessing the stability of rock slopes with respect to flexural toppling failure using a limit equilibrium model and genetic algorithm. Computers and Geotechnics, 2020, 124: 103619

    Article  Google Scholar 

  12. Zhang Y. Multi-slicing strategy for the three-dimensional discontinuity layout optimization (3D DLO). International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(4): 488–507

    Article  Google Scholar 

  13. Zhang Y, Zhuang X. Cracking elements: A self-propagating strong discontinuity embedded approach for quasi-brittle fracture. Finite Elements in Analysis and Design, 2018, 144: 84–100

    Article  MathSciNet  Google Scholar 

  14. Zhang Y, Zhuang X, Lackner R. Stability analysis of shotcrete supported crown of NATM tunnels with discontinuity layout optimization. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42(11): 1199–1216

    Article  Google Scholar 

  15. Rabczuk T, Belytschko T. Cracking particles: A simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343

    Article  MATH  Google Scholar 

  16. Niu H. Smart safety early warning model of landslide geological hazard based on BP neural network. Safety Science, 2020, 12(3): 154–172

    Google Scholar 

  17. Qian Z G, Li A J, Chen W C, Lyamin A V, Jiang J C. An artificial neural network approach to inhomogeneous soil slope stability predictions based on limit analysis methods. Soils and foundations, 2019, 59(2): 556–569

    Article  Google Scholar 

  18. Kaunda R B, Chase R B, Kehew A E, Kaugars K, Selegean J P. Neural network modeling applications in active slope stability problems. Environmental Earth Sciences, 2010, 60(7): 1545–1558

    Article  Google Scholar 

  19. Verma A K, Singh T N, Chauhan N K, Sarkar K. A hybrid FEM—ANN approach for slope instability prediction. Journal of the Institution of Engineers, 2016, 97(3): 1–10

    Google Scholar 

  20. Teng Z, Teng S, Zhang J, Chen G, Cui F. Structural damage detection based on real-time vibration signal and convolutional neural network. Applied Sciences (Basel, Switzerland), 2020, 10(14): 4720

    Google Scholar 

  21. Han Z, Chen H, Liu Y, Li Y, Du Y, Zhang H. Vision-based crack detection of asphalt pavement using deep convolutional neural network. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2021, 45(3): 2047–2055

    Article  Google Scholar 

  22. Islam M, Kim J M. Vision-based autonomous crack detection of concrete structures using a fully convolutional encoder-decoder network. Sensors (Basel), 2019, 19(19): 4251

    Article  Google Scholar 

  23. Yang X, Chen Y, Teng S, Chen G. A novel method for predicting local site amplification factors using 1-D convolutional neural networks. Applied Sciences (Basel, Switzerland), 2021, 11(24): 11650

    Google Scholar 

  24. Teng S, Chen G, Gong P, Liu G, Cui F. Structural damage detection using convolutional neural networks combining strain energy and dynamic response. Meccanica, 2020, 55(4): 945–959

    Article  MathSciNet  Google Scholar 

  25. Yang R, Li Y, Qin B, Zhao D, Gan Y, Zheng J. Pesticide detection combining the Wasserstein generative adversarial network and the residual neural network based on terahertz spectroscopy. RSC Advances, 2022, 12(3): 1769–1776

    Article  Google Scholar 

  26. Ishii Y, Ota K, Kuraoka S, Tsunaki R. Evaluation of slope stability by finite element method using observed displacement of landslide. Landslides, 2012, 9(3): 335–348

    Article  Google Scholar 

  27. Li D, Yan L, Wu L, Yin K, Leo C. The Hejia**zi landslide in Weining County, Guizhou Province, southwest China: A recent slow-moving landslide triggered by reservoir drawdown. Landslides, 2019, 16(7): 1353–1365

    Article  Google Scholar 

  28. Kumar M, Krishnaveni V, Muthukumar S. Geotechnical investigation and numerical analysis of slope failure: A case study of landslide vulnerability zone in Kolli Hills, Tamil Nadu. Journal of the Geological Society of India, 2021, 97(5): 513–519

    Article  Google Scholar 

  29. Kaya A, Midilli Ü M. Slope stability evaluation and monitoring of a landslide: A case study from NE Turkey. Journal of Mountain Science, 2020, 17(11): 2624–2635

    Article  Google Scholar 

  30. Tschuchnigg F, Oberhollenzer, S, Veigl I. Slope stability analysis: Limit analysis vs strength reduction FEA. In: International Conference of the International Association for Computer Methods and Advances in Geomechanics. Turin: Springer, 2021: 498–506

    Google Scholar 

  31. Griffiths D V. Advanced Numerical Applications and Plasticity in Geomechanics. Vienna: Springer, 2001: 159–229

    Book  Google Scholar 

  32. Aringoli D, Materazzi M, Gentili B, Pambianchi G, Sciarra N. Engineering Geology for Society and Territory-Volume 2. Cham: Springer, 2015: 1371–1376

    Book  Google Scholar 

  33. Cai J S, Yeh T, Yan E C, Tang R, Hao Y H. Design of borehole deployments for slope stability analysis based on a probabilistic approach. Computers and Geotechnics, 2021, 133: 103909

    Article  Google Scholar 

  34. Su Z, Shao L. A three-dimensional slope stability analysis method based on finite element method stress analysis. Engineering Geology, 2021, 280: 105910

    Article  Google Scholar 

  35. R Baker, M Garber. Theoretical Analysis of The Stability of Slopes. London: Thomas Telford Limited, 1978

    Book  Google Scholar 

  36. Chen Z, Morgenstern N R. Extensions to the generalized method of slices for stability analysis. Canadian Geotechnical Journal, 1983, 20(1): 104–119

    Article  Google Scholar 

  37. Chen Z. Soil Slope Stability Analysis: Theory, Methods, and Programs. Bei**g: China Water Power Press, 2003 (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gongfa Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Lin, M., Zhang, Y. et al. Slope stability analysis based on big data and convolutional neural network. Front. Struct. Civ. Eng. 16, 882–895 (2022). https://doi.org/10.1007/s11709-022-0859-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-022-0859-4

Keywords

Navigation