Log in

Preparation of PVA@PEI@BAC@CNC composite nanofibrous film with high efficiency filtration for PM2.5

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

It is still a challenge to prepare a water- and polymer-based electrospun air filter film with high efficiency filtration, low pressure drop, and good mechanical properties. To address this issue, polyvinyl alcohol (PVA) was employed as the main material, mixing polyethyleneimine (PEI), bamboo-based activated carbon (BAC) and cellulose nanocrystal (CNC) to construct the air filter film by electrostatic electrospinning. In this system, the negatively charged BAC and CNC are fixed in the system through bonding with the positively charged PEI, showing a double adsorption effect. One is the mechanical filtration of the porous network structure constructed by PVA@PEI electrospun nanofibers, and the other is the electrostatic adsorption of PM2.5 on the surface of BAC and CNC. It is significant that the resulting composite air filter displays a high filtration efficiency of 95.86%, a pressure drop of only 59 Pa, and good thermal stability. Moreover, the introduced methyltrimethoxysilane (MTMS) endows it with good water-resistance. Given these excellent performances, this system can provide theoretical and technical references for the development of water- and polymer-based electrospun air filter film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lelieveld J, Evans J S, Fnais M, et al. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 2015, 525(7569): 367–371

    Article  CAS  ADS  Google Scholar 

  2. Pui D Y H, Chen S C, Zuo Z. PM2.5 in China: measurements, sources, visibility and health effects, and mitigation. Particuology, 2014, 13: 1–26

    Article  CAS  Google Scholar 

  3. Anwar M N, Shabbir M, Tahir E, et al. Emerging challenges of air pollution and particulate matter in China, India, and Pakistan and mitigating solutions. Journal of Hazardous Materials, 2021, 416: 125851

    Article  CAS  Google Scholar 

  4. Yang D, Liu Z, Yang P, et al. A curtain purification system based on a rabbit fur-based rotating triboelectric nanogenerator for efficient photocatalytic degradation of volatile organic compounds. Nanoscale, 2023, 15(14): 6709–6721

    Article  CAS  Google Scholar 

  5. Zhu C, Yang F, Xue T, et al. Metal-organic framework decorated polyimide nanofiber aerogels for efficient high-temperature particulate matter removal. Separation and Purification Technology, 2022, 300: 121881

    Article  CAS  Google Scholar 

  6. Sohara K, Yamauchi K, Sun X, et al. Photocatalytic degradation of polycyclic aromatic hydrocarbons in fine particulate matter (PM2.5) collected on TiO2-supporting quartz fibre filters. Catalysts, 2021, 11(3): 400

    Article  CAS  Google Scholar 

  7. Shiraki K, Yamada H, Yoshida Y, et al. Improved photocatalytic air cleaner with decomposition of aldehyde and aerosol-associated influenza virus infectivity in indoor air. Aerosol and Air Quality Research, 2017, 17(11): 2901–2912

    Article  CAS  Google Scholar 

  8. Sukchai P, Wanwong S, Wootthikanokkhan J. Electrospun cellulose air filter coated with zeolitic imidazolate frameworks (ZIFs) for efficient particulate matter removal: effect of coated ZIFs on filtration performance. Fibers and Polymers, 2022, 23(5): 1206–1216

    Article  CAS  Google Scholar 

  9. Kim H J, Kim Y J, Seo Y J, et al. Hybrid bead air filters with low pressure drops at a high flow rate for the removal of particulate matter and HCHO. Polymers, 2022, 14(3): 422

    Article  CAS  Google Scholar 

  10. Zhang H, Liu J, Zhang X, et al. Design of electret polypropylene melt blown air filtration material containing nucleating agent for effective PM2.5 capture. RSC Advances, 2018, 8(15): 7932–7941

    Article  CAS  ADS  Google Scholar 

  11. Liu C, Dai Z, He B, et al. The effect of temperature and humidity on the filtration performance of electret melt-blown nonwovens. Materials, 2020, 13(21): 4774

    Article  CAS  ADS  Google Scholar 

  12. Li J, Gao F, Liu L Q, et al. Needleless electro-spun nanofibers used for filtration of small particles. Express Polymer Letters, 2013, 7(8): 683–689

    Article  CAS  Google Scholar 

  13. Ryu J, Kim J J, Byeon H, et al. Removal of fine particulate matter (PM2.5) via atmospheric humidity caused by evapotranspiration. Environmental Pollution, 2019, 245: 253–259

    Article  CAS  Google Scholar 

  14. Chen J, Zhou Z, Miao Y, et al. Preparation of CS@BAC composite aerogel with excellent flame-retardant performance, good filtration for PM2.5 and strong adsorption for formaldehyde. Process Safety and Environmental Protection, 2023, 173: 354–365

    Article  CAS  Google Scholar 

  15. Li C L, Song W Z, Sun D J, et al. A self-priming air filtration system based on triboelectric nanogenerator for active air purification. Chemical Engineering Journal, 2023, 452: 139428

    Article  CAS  Google Scholar 

  16. Zhao K, Ren C, Lu Y, et al. Cellulose nanofibril/PVA/bamboo activated charcoal aerogel sheet with excellent capture for PM2.5 and thermal stability. Carbohydrate Polymers, 2022, 291: 119625

    Article  CAS  Google Scholar 

  17. Biranje S, Madiwale P, Adivarekar R V. Electrospinning of chitosan/PVA nanofibrous membrane at ultralow solvent concentration. Journal of Polymer Research, 2017, 24(6): 92

    Article  Google Scholar 

  18. Han W, Rao D, Gao H, et al. Green-solvent-processable biodegradable poly(lactic acid) nanofibrous membranes with bead-on-string structure for effective air filtration: “Kill two birds with one stone”. Nano Energy, 2022, 97: 107237

    Article  CAS  Google Scholar 

  19. Rajak A, Hapidin D A, Iskandar F, et al. Controlled morphology of electrospun nanofibers from waste expanded polystyrene for aerosol filtration. Nanotechnology, 2019, 30(42): 425602

    Article  Google Scholar 

  20. Yan G, Yang Z, Li J, et al. Multi-unit needleless electrospinning for one-step construction of 3D waterproof MF-PVA nanofibrous membranes as high-performance air filters. Small, 2023, 19(7): 2206403

    Article  CAS  Google Scholar 

  21. Yardimci A I, Kayhan M, Tarhan O. Polyacrylonitrile (PAN)/polyvinyl alcohol (PVA) electrospun nanofibrous membranes synthesis, characterizations, and their air permeability properties. Journal of Macromolecular Science Part B: Physics, 2022, 61(10–11): 1426–1435

    Article  ADS  Google Scholar 

  22. Wang Q, Yildiz O, Li A, et al. High temperature carbon nanotube — nanofiber hybrid filters. Separation and Purification Technology, 2020, 236: 116255

    Article  CAS  Google Scholar 

  23. Khan M Q, Kharaghani D, Ullah S, et al. Self-cleaning properties of electrospun PVA/TiO2 and PVA/ZnO nanofibers composites. Nanomaterials, 2018, 8(9): 644

    Article  Google Scholar 

  24. des Ligneris E, Dumée L F, Al-Attabi R, et al. Mixed matrix poly (vinyl alcohol)–copper nanofibrous anti-microbial airmicrofilters. Membranes, 2019, 9(7): 87

    Article  CAS  Google Scholar 

  25. Nemoto J, Saito T, Isogai A. Simple freeze-drying procedure for producing nanocellulose aerogel-containing, high-performance air filters. ACS Applied Materials & Interfaces, 2015, 7(35): 19809–19815

    Article  CAS  Google Scholar 

  26. Zhang S, Tanioka A, Okamoto M, et al. High-quality nanofibrous nonwoven air filters: additive effect of water-jet nanofibrillated celluloses on their performance. ACS Applied Polymer Materials, 2020, 2(7): 2830–2838

    Article  CAS  Google Scholar 

  27. Abid Z, Hakiki A, Boukoussa B, et al. Preparation of highly hydrophilic PVA/SBA-15 composite materials and their adsorption behavior toward cationic dye: effect of PVA content. Journal of Materials Science, 2019, 54(10): 7679–7691

    Article  CAS  ADS  Google Scholar 

  28. Chen Y, Cao J, Wei H, et al. Fabrication of AgNPs decorated on electrospun PVA/PEI nanofibers as SERS substrate for detection of enrofloxacin. Journal of Food Measurement and Characterization, 2022, 16(3): 2314–2322

    Article  Google Scholar 

  29. Majumdar S S, Das S K, Saha T, et al. Adsorption behavior of copper ions on Mucor rouxii biomass through microscopic and FTIR analysis. Colloids and Surfaces B: Biointerfaces, 2008, 63(1): 138–145

    Article  CAS  Google Scholar 

  30. Choi J H, Hong Y P, Park Y C. Spectroscopic and ligand-field properties of [L-prolylglycinato][di(3-aminopropyl) amine] chromium(III) perchlorate. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2002, 58(8): 1599–1606

    Article  ADS  Google Scholar 

  31. Liu Y, Huang Y, Huang Q, et al. Liquid-phase deposition functionalized wood sponges for oil/water separation. Journal of Materials Science, 2021, 56(34): 19075–19092

    Article  CAS  ADS  Google Scholar 

  32. Kim H J, Park S J, Park C S, et al. Surface-modified polymer nanofiber membrane for high-efficiency microdust capturing. Chemical Engineering Journal, 2018, 339: 204–213

    Article  CAS  Google Scholar 

  33. Zhang J, Lu Q, Ni R, et al. Spiral grass inspired eco-friendly zein fibrous membrane for multi-efficient air purification. International Journal of Biological Macromolecules, 2023, 245: 125512

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Project funded by the China Postdoctoral Science Foundation (No. 2021M692806), the Natural Science Foundation of Zhejiang Province (No. LY21C160002), and the Scientific Research Development Foundation of Zhejiang A & F University (No. 2018FR054).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenbiao Zhang or Kuichuan Sheng.

Ethics declarations

Declaration of competing interests The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Wang, Y., Cai, Y. et al. Preparation of PVA@PEI@BAC@CNC composite nanofibrous film with high efficiency filtration for PM2.5. Front. Mater. Sci. 17, 230659 (2023). https://doi.org/10.1007/s11706-023-0659-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11706-023-0659-3

Keywords

Navigation