Log in

Fabrication of Cu/graphite film/Cu sandwich composites with ultrahigh thermal conductivity for thermal management applications

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Effective thermal management of electronic integrated devices with high powder density has become a serious issue, which requires materials with high thermal conductivity (TC). In order to solve the problem of weak bonding between graphite and Cu, a novel Cu/graphite film/Cu sandwich composite (Cu/GF/Cu composite) with ultrahigh TC was fabricated by electro-deposition. The micro-riveting structure was introduced to enhance the bonding strength between graphite film and deposited Cu layers by preparing a rectangular array of micro-holes on the graphite film before electro-deposition. TC and mechanical properties of the composites with different graphite volume fractions and current densities were investigated. The results showed that the TC enhancement generated by the micro-riveting structure for Cu/GF/Cu composites at low graphite content was more effective than that at high graphite content, and the strong texture orientation of deposited Cu resulted in high TC. Under the optimizing preparing condition, the highest in-plane TC reached 824.3 W·m−1K−1, while the ultimate tensile strength of this composite was about four times higher than that of the graphite film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang W, Zhou L, Peng K, et al. Effect of tungsten addition on thermal conductivity of graphite/copper composites. Composites Part B: Engineering, 2013, 55: 1–4

    Article  CAS  Google Scholar 

  2. Bai H, Ma N, Lang J, et al. Thermal conductivity of Cu/diamond composites prepared by a new pretreatment of diamond powder. Composites Part B: Engineering, 2013, 52: 182–186

    Article  CAS  Google Scholar 

  3. Tao P, Shang W, Song C, et al. Bioinspired engineering of thermal materials. Advanced Materials, 2015, 27(3): 428–463

    Article  CAS  Google Scholar 

  4. Zhou C, Huang W, Chen Z, et al. In-plane thermal enhancement behaviors of Al matrix composites with oriented graphite flake alignment. Composites Part B: Engineering, 2015, 70: 256–262

    Article  CAS  Google Scholar 

  5. **n G, Sun H, Hu T, et al. Large-area freestanding graphene paper for superior thermal management. Advanced Materials, 2014, 26 (26): 4521–4526

    Article  CAS  Google Scholar 

  6. Ma Z K, Shi J L, Song Y, et al. Carbon with high thermal conductivity, prepared from ribbon-shaped mesosphase pitch-based fibers. Carbon, 2006, 44(7): 1298–1301

    Article  CAS  Google Scholar 

  7. Jiang B, Wang H, Wen G, et al. Copper–graphite–copper sandwich: superior heat spreader with excellent heat-dissipation ability and good weldability. RSC Advances, 2016, 6(30): 25128–25136

    Article  CAS  Google Scholar 

  8. Tan Z, Li Z, Fan G, et al. Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nano-layer. Materials & Design, 2013, 47: 160–166

    Article  CAS  Google Scholar 

  9. Mizuuchi K, Inoue K, Agari Y, et al. Processing of diamond particle dispersed aluminum matrix composites in continuous solid–liquid co-existent state by SPS and their thermal properties. Composites Part B: Engineering, 2011, 42(4): 825–831

    Article  Google Scholar 

  10. Prieto R, Molina J M, Narciso J, et al. Fabrication and properties of graphite flakes/metal composites for thermal management applications. Scripta Materialia, 2008, 59(1): 11–14

    Article  CAS  Google Scholar 

  11. Chen J K, Huang I S. Thermal properties of aluminum–graphite composites by powder metallurgy. Composites Part B: Engineering, 2013, 44(1): 698–703

    Article  CAS  Google Scholar 

  12. Prieto R, Molina J M, Narciso J, et al. Thermal conductivity of graphite flakes–SiC particles/metal composites. Composites Part A: Applied Science and Manufacturing, 2011, 42(12): 1970–1977

    Article  Google Scholar 

  13. Zhou C, Ji G, Chen Z, et al. Fabrication, interface characterization and modeling of oriented graphite flakes/Si/Al composites for thermal management applications. Materials & Design, 2014, 63: 719–728

    Article  CAS  Google Scholar 

  14. Huang Y, Ouyang Q, Guo Q, et al. Graphite film/aluminum laminate composites with ultrahigh thermal conductivity for thermal management applications. Materials & Design, 2016, 90(59): 508–515

    Article  CAS  Google Scholar 

  15. Sun W, Zhan K, Yang Z, et al. Facile fabrication of GO/Al composites with improved dispersion of graphene and enhanced mechanical properties by Cu do** and powder metallurgy. Journal of Alloys and Compounds, 2020, 815: 152465

    Article  CAS  Google Scholar 

  16. Inagaki M, Kaburagi Y, Hishiyama Y. Thermal man agement material: graphite. Advanced Engineering Materials, 2014, 16(5): 494–506

    Article  CAS  Google Scholar 

  17. Inagaki M, Ohta N, Hishiyama Y. Aromatic polyimides as carbon precursors. Carbon, 2013, 61: 1–21

    Article  CAS  Google Scholar 

  18. Huang Y, Su Y, Li S, et al. Fabrication of graphite film/aluminum composites by vacuum hot pressing: Process optimization and thermal conductivity. Composites Part B: Engineering, 2016, 107: 43–50

    Article  CAS  Google Scholar 

  19. Kurita H, Miyazaki T, Kawasaki A, et al. Interfacial micro-structure of graphite flake reinforced aluminum matrix composites fabricated via hot pressing. Composites Part A: Applied Science and Manufacturing, 2015, 73: 125–131

    Article  CAS  Google Scholar 

  20. Li W, Liu Y, Wu G. Preparation of graphite flakes/Al with preferred orientation and high thermal conductivity by squeeze casting. Carbon, 2015, 95: 545–551

    Article  CAS  Google Scholar 

  21. Huang Y, Li X, Wang Y, et al. Endoplasmic reticulum stress-induced hepatic stellate cell apoptosis through calcium-mediated JNK/P38 MAPK and Calpain/Caspase-12 pathways. Molecular and Cellular Biochemistry, 2014, 394(1–2): 1–12

    Article  CAS  Google Scholar 

  22. Abyzov A M, Kidalov S V, Shakhov F M. High thermal conductivity composite of diamond particles with tungsten coating in a copper matrix for heat sink application. Applied Thermal Engineering, 2012, 48: 72–80

    Article  CAS  Google Scholar 

  23. Chen J, Ren S, He X, et al. Properties and microstructure of nickel-coated graphite flakes/copper composites fabricated by spark plasma sintering. Carbon, 2017, 121: 25–34

    Article  CAS  Google Scholar 

  24. Tao Z, Guo Q, Gao X, et al. The wettability and interface thermal resistance of copper/graphite system with an addition of chromium. Materials Chemistry and Physics, 2011, 128(1–2): 228–232

    Article  CAS  Google Scholar 

  25. Guo S J, Yang Q S, He X Q, et al. Modeling of interface cracking in copper–graphite composites by MD and CFE method. Composites Part B: Engineering, 2014, 58: 586–592

    Article  CAS  Google Scholar 

  26. Weber L, Tavangar R. Diamond-based metal matrix composites for thermal management made by liquid metal infiltration — potential and limits. Advanced Materials Research, 2009, 59: 111–115

    Article  CAS  Google Scholar 

  27. Yuan G, Li X, Dong Z, et al. Graphite blocks with preferred orientation and high thermal conductivity. Carbon, 2012, 50(1): 175–182

    Article  CAS  Google Scholar 

  28. Chang J, Zhang Q, Lin Y, et al. Layer by layer graphite film reinforced aluminum composites with an enhanced performance of thermal conduction in the thermal management applications. Journal of Alloys and Compounds, 2018, 742: 601–609

    Article  CAS  Google Scholar 

  29. Chen H, Wei H, Chen M, et al. Enhancing the effectiveness of silicone thermal grease by the addition of functionalized carbon nanotubes. Applied Surface Science, 2013, 283(2): 525–531

    Article  CAS  Google Scholar 

  30. Liang J L, Li H, Li Y G. Electro-deposition method’s influence to ferrosilicon organization. Advanced Materials Research, 2013, 712–715: 50–53

    Article  Google Scholar 

  31. Moore A L, Shi L. Emerging challenges and materials for thermal management of electronics. Materials Today, 2014, 17(4): 163–174

    Article  CAS  Google Scholar 

  32. Yuan J, Zhang K, Li T, et al. Anisotropy of thermal conductivity and mechanical properties in Mg–5Zn–1Mn alloy. Materials & Design, 2012, 40: 257–261

    Article  CAS  Google Scholar 

  33. Zhan K, Wu Y, Li J, et al. Investigation on surface layer characteristics of shot peened graphene reinforced Al composite by X-ray diffraction method. Applied Surface Science, 2018, 435: 1257–1264

    Article  CAS  Google Scholar 

  34. Wolter S D, Borca-Tasciuc D A, Chen G, et al. Thermal conductivity of epitaxially textured diamond films. Diamond and Related Materials, 2003, 12(1): 61–64

    Article  CAS  Google Scholar 

  35. Boden A, Boerner B, Kusch P, et al. Nanoplatelet size to control the alignment and thermal conductivity in copper–graphite composites. Nano Letters, 2014, 14(6): 3640–3644

    Article  CAS  Google Scholar 

  36. Firkowska I, Boden A, Boemer B, et al. The origin of high thermal conductivity and ultralow thermal expansion in copper–graphite composites. Nano Letters, 2015, 15(7): 4745–4751

    Article  CAS  Google Scholar 

  37. Liu Q, He X B, Ren S B, et al. Thermophysical properties and microstructure of graphite flake/copper composites processed by electroless copper coating. Journal of Alloys and Compounds, 2014, 587: 255–259

    Article  CAS  Google Scholar 

  38. Jagannadham K. Volume fraction of graphene platelets in copper–graphene composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 44(1): 552–559

    Article  Google Scholar 

  39. Chu K, Wang X H, Wang F, et al. Largely enhanced thermal conductivity of graphene/copper composites with highly aligned graphene network. Carbon, 2018, 127: 102–112

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51605293 and 51702213) and the Shanghai Science and Technology Commission (18060502300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Zhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Li, W., Wang, T. et al. Fabrication of Cu/graphite film/Cu sandwich composites with ultrahigh thermal conductivity for thermal management applications. Front. Mater. Sci. 14, 188–197 (2020). https://doi.org/10.1007/s11706-020-0503-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-020-0503-y

Keywords

Navigation