Log in

Preparation and optimization of freestanding GaN using low-temperature GaN layer

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

In this work, a method to acquire freestanding GaN by using low temperature (LT)-GaN layer was put forward. To obtain porous structure and increase the crystallinity, LT-GaN layers were annealed at high temperature. The morphology of LT-GaN layers with different thickness and annealing temperature before and after annealing was analyzed. Comparison of GaN films using different LT-GaN layers was made to acquire optimal LT-GaN process. According to HRXRD and Raman results, GaN grown on 800 nm LT-GaN layer which was annealed at 1090 °C has good crystal quality and small stress. The GaN film was successfully separated from the substrate after cooling down. The self-separation mechanism of this method was discussed. Cross-sectional EBSD map** measurements were carried out to investigate the effect of LT-buffer layer on improvement of crystal quality and stress relief. The optical property of the obtained freestanding GaN film was also determined by PL measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Darakchieva V, Paskova T, Paskov P P, et al. Residual strain in HVPE GaN free-standing and re-grown homoepitaxial layers. Physica Status Solidi A: Applied Research, 2003, 195(3): 516–522

    Article  CAS  Google Scholar 

  2. Richter E, Gründer M, Schineller B, et al. GaN boules grown by high rate HVPE. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8(5): 1450–1454

    Article  CAS  Google Scholar 

  3. Luo W, Wang X, **ao H, et al. Growth and fabrication of AlGaN/GaN HEMT based on Si (111) substrates by MOCVD. Microelectronics Journal, 2008, 39(9): 1108–1111

    Article  CAS  Google Scholar 

  4. Cui Y, Li L. Evolution of spirals during molecular beam epitaxy of GaN on 6H-SiC (0001). Physical Review B: Condensed Matter, 2002, 66(15): 155330

    Article  Google Scholar 

  5. Cho S I, Chang K, Kwon M S. Strain analysis of a GaN epilayer grown on a c-plane sapphire substrate with different growth times. Journal of Materials Science, 2007, 42(10): 3569–3572

    Article  CAS  Google Scholar 

  6. Qian W, Skowronski M, De Graef M, et al. Microstructural characterization of α-GaN films grown on sapphire by organometallic vapor phase epitaxy. Applied Physics Letters, 1995, 66(10): 1252–1254

    Article  CAS  Google Scholar 

  7. Kim H M, Oh J E, Kang T W. Preparation of large area freestanding GaN substrates by HVPE using mechanical polishing liftoff method. Materials Letters, 2001, 47(4–5): 276–280

    Article  CAS  Google Scholar 

  8. Kelly M K, Vaudo R P, Phanse V M, et al. Large free-standing GaN substrates by hydride vapor phase epitaxy and laser-induced liftoff. Japanese Journal of Applied Physics, 1999, 38(Part 2, No. 3A): L217–L219

    Article  CAS  Google Scholar 

  9. Oshima Y, Eri T, Shibata M, et al. Fabrication of freestanding GaN wafers by hydride vapor-phase epitaxy with void-assisted separation. Physica Status Solidi, 2002, 194(2): 554–558

    Article  CAS  Google Scholar 

  10. Oshima Y, Eri T, Shibata M, et al. Preparation of freestanding GaN wafers by hydride vapor phase epitaxy with void-assisted separation. Japanese Journal of Applied Physics, 2003, 42(Part 2, No. 1A/B): L1–L3

    Article  CAS  Google Scholar 

  11. Chao C L, Chiu C H, Lee Y J, et al. Freestanding high quality GaN substrate by associated GaN nanorods self-separated hydride vapor-phase epitaxy. Applied Physics Letters, 2009, 95(5): 051905

    Article  Google Scholar 

  12. Motoki K, Okahisa T, Nakahata S, et al. Preparation of large GaN substrates. Materials Science and Engineering B, 2002, 93(1–3): 123–130

    Article  Google Scholar 

  13. Zhang L, Shao Y, Hao X, et al. Improvement of crystal quality HVPE grown GaN on an H3PO4 etched template. CrystEng-Comm, 2011, 13(15): 5001–5004

    Article  CAS  Google Scholar 

  14. Zhang L, Dai Y, Wu Y, et al. Epitaxial growth of a self-separated GaN crystal by using a novel high temperature annealing porous template. CrystEngComm, 2014, 16(38): 9063–9068

    Article  CAS  Google Scholar 

  15. Gogova D, Kasic A, Larsson H, et al. Strain-free bulk-like GaN grown by hydride-vapor-phase-epitaxy on two-step epitaxial lateral overgrown GaN template. Journal of Applied Physics, 2004, 96(1): 799–806

    Article  CAS  Google Scholar 

  16. Gibart B, Beaumont P, Vennegues P. Nitride semiconductors. In: Ruterana P, Albrecht M, Neugebauer J, eds. Handbook on Materials and Devices. Weinheim, Germany: Wiley-VCH, 2003, 45

    Google Scholar 

  17. Tian Y, Shao Y, Wu Y, et al. Direct growth of freestanding GaN on C-face SiC by HVPE. Scientific Reports, 2015, 5(1): 10748

    Article  CAS  Google Scholar 

  18. Tripathy S, Chua S J, Chen P, et al. Micro-Raman investigation of strain in GaN and AlxGa1 xN/GaN heterostructures grown on Si (111). Journal of Applied Physics, 2002, 92(7): 3503–3510

    Article  CAS  Google Scholar 

  19. Kisielowski C, Krüger J, Ruvimov S, et al. Strain-related phenomena in GaN thin films. Physical Review B: Condensed Matter, 1996, 54(24): 17745–17753

    Article  CAS  Google Scholar 

  20. Boguslawski P, Briggs E L, Bernholc J. Native defects in gallium nitride. Physical Review B, 1995, 51(23): 17255–17258

    Article  CAS  Google Scholar 

  21. Xu F J, Shen B, Lu L, et al. Different origins of the yellow luminescence in as-grown high-resistance GaN and unintentional-doped GaN films. Journal of Applied Physics, 2010, 107(2): 023528

    Article  Google Scholar 

  22. Lyons J L, Janotti A, Van de Walle C G. Carbon impurities and the yellow luminescence in GaN. Applied Physics Letters, 2010, 97(15): 152108

    Article  Google Scholar 

  23. Ambacher O, Brandt M S, Dimitrov R, et al. Thermal stability and desorption of Group III nitrides prepared by metal organic chemical vapor deposition. Journal of Vacuum Science & Technology B, 1996, 14(6): 3532–3542

    Article  CAS  Google Scholar 

  24. Rebey A, Boufaden T, El Jani B. In situ optical monitoring of the decomposition of GaN thin films. Journal of Crystal Growth, 1999, 203(1–2): 12–17

    Article  CAS  Google Scholar 

  25. L’vov B V. Kinetics and mechanism of thermal decomposition of GaN. Thermochimica Acta, 2000, 360(1): 85–91

    Article  Google Scholar 

  26. Shao Y, Zhang L, Hao X, et al. Large area stress distribution in crystalline materials calculated from lattice deformation identified by electron backscatter diffraction. Scientific Reports, 2014, 4: 5934 (5 pages)

    Article  CAS  Google Scholar 

  27. Shao Y, Dai Y, Hao X, et al. EBSD crystallographic orientation research on strain distribution in hydride vapor phase epitaxy GaN grown on patterned substrate. CrystEngComm, 2013, 15(39): 7965–7969

    Article  CAS  Google Scholar 

  28. Wilkinson A J, Hirsh P B. Electron diffraction based techniques in scanning electron microscopy of bulk materials. Micron, 1997, 28: 279–308

    Article  Google Scholar 

  29. Stanford N, Dunne D, Ferry M. Deformation and annealing of (011)[011] oriented Al single crystals. Acta Materialia, 2003, 51(3): 665–676

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51702226, 51572153 and 51602177) and the Natural Science Foundation of Shanxi Province (Grant No. 201701D221078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongliang Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Shao, Y., Hao, X. et al. Preparation and optimization of freestanding GaN using low-temperature GaN layer. Front. Mater. Sci. 13, 314–322 (2019). https://doi.org/10.1007/s11706-019-0466-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-019-0466-z

Keywords

Navigation