Log in

Recent advances of small-molecule fluorescent probes for detecting biological hydrogen sulfide

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

H2S is well-known as a colorless, acidic gas, with a notoriously rotten-egg smell. It was recently revealed that H2S is also an endogenous signaling molecule that has important biological functions, however, most of its physiology and pathology remains elusive. Therefore, the enthusiasm for H2S research remains. Fluorescence imaging technology is an important tool for H2S biology research. The development of fluorescence imaging technology has realized the study of H2S in subcellular organelles, facilitated by the development of fluorescent probes. The probes reviewed in this paper were categorized according to their chemical mechanism of sensing and were divided into three groups: H2S reducibility-based probes, H2S nucleophilicity-based probes, and metal sulfide precipitation-based probes. The structure of the probes, their sensing mechanism, and imaging results have been discussed in detail. Moreover, we also introduced some probes for hydrogen polysulfides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barr L A, Calvert J W. Discoveries of hydrogen sulfide as a novel cardiovascular therapeutic. Circulation Journal, 2014, 78(9): 2111–2118

    Article  CAS  PubMed  Google Scholar 

  2. Brancaleone V, Mitidieri E, Flower R J, Cirino G, Perretti M. Annexin A1 mediates hydrogen sulfide properties in the control of inflammation. Journal of Pharmacology and Experimental Therapeutics, 2014, 351(1): 96–104

    Article  Google Scholar 

  3. Chen W L, Niu Y Y, Jiang W Z, Tang H L, Zhang C, **a Q M, Tang X Q. Neuroprotective effects of hydrogen sulfide and the underlying signaling pathways. Reviews in the Neurosciences, 2015, 26(2): 129–142

    Article  PubMed  Google Scholar 

  4. Hosoki R, Matsuki N, Kimura H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochemical and Biophysical Research Communications, 1997, 237(3): 527–531

    Article  CAS  PubMed  Google Scholar 

  5. Abdelrahman R S, El-Awady M S, Nader M A, Ammar E M. Hydrogen sulfide ameliorates cardiovascular dysfunction induced by cecal ligation and puncture in rats. Human and Experimental Toxicology, 2015, 34(10): 953–964

    Article  CAS  PubMed  Google Scholar 

  6. Cheung S H, Kwok W K, To K F, Lau J Y. Anti-atherogenic effect of hydrogen sulfide by over-expression of cystathionine γ-lyase (CSE) gene. PLoS One, 2014, 9(11): e113038

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liu Z, Han Y, Li L, Lu H, Meng G, Li X, Shirhan M, Peh M T, **e L, Zhou S, et al. The hydrogen sulfide donor, GYY4137, exhibits anti-atherosclerotic activity in high fat fed apolipoprotein E(-/-) mice. British Journal of Pharmacology, 2013, 169(8): 1795–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jain S K, Huning L, Micinski D. Hydrogen sulfide upregulates glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit, and glutathione and inhibits interleukin-1beta secretion in monocytes exposed to high glucose levels. Metabolic Syndrome and Related Disorders, 2014, 12(5): 299–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sieghart D, Liszt M, Wanivenhaus A, Broll H, Kiener H, Klosch B, Steiner G. Hydrogen sulphide decreases IL-1β-induced activation of fibroblast-like synoviocytes from patients with osteoarthritis. Journal of Cellular and Molecular Medicine, 2015, 19(1): 187–197

    Article  CAS  PubMed  Google Scholar 

  10. Giuliani D, Ottani A, Zaffe D, Galantucci M, Strinati F, Lodi R, Guarini S. Hydrogen sulfide slows down progression of experimental Alzheimer’s disease by targeting multiple pathophysiological mechanisms. Neurobiology of Learning and Memory, 2013, 104: 82–91

    Article  CAS  PubMed  Google Scholar 

  11. Wang M, Zhu J, Pan Y, Dong J, Zhang L, Zhang X, Zhang L. Hydrogen sulfide functions as a neuromodulator to regulate striatal neurotransmission in a mouse model of Parkinson’s disease. Journal of Neuroscience Research, 2015, 93(3): 487–494

    Article  CAS  PubMed  Google Scholar 

  12. Magierowski M, Jasnos K, Kwiecien S, Drozdowicz D, Surmiak M, Strzalka M, Ptak B A, Wallace J L, Brzozowski T. Endogenous prostaglandins and afferent sensory nerves in gastroprotective effect of hydrogen sulfide against stress-induced gastric lesions. PLoS One, 2015, 10(3): e0118972

    Article  PubMed  PubMed Central  Google Scholar 

  13. DeRatt B N, Ralat M A, Kabil O, Chi Y Y, Banerjee R, Gregory J F III. Vitamin B-6 restriction reduces the production of hydrogen sulfide and its biomarkers by the transsulfuration pathway in cultured human hepatoma cells. Journal of Nutrition, 2014, 144 (10): 1501–1508

    Article  CAS  Google Scholar 

  14. Kimura H. Production and physiological effects of hydrogen sulfide. Antioxidants & Redox Signaling, 2014, 20(5): 783–793

    Article  CAS  Google Scholar 

  15. Whiteman M, Moore P K. Hydrogen sulfide and the vasculature: a novel vasculoprotective entity and regulator of nitric oxide bioavailability? Journal of Cellular and Molecular Medicine, 2009, 13(3): 488–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lin V S, Chang C J. Fluorescent probes for sensing and imaging biological hydrogen sulfide. Current Opinion in Chemical Biology, 2012, 16(5–6): 595–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yu F, Han X, Chen L. Fluorescent probes for hydrogen sulfide detection and bioimaging. Chemical Communications, 2014, 50 (82): 12234–12249

    Article  CAS  PubMed  Google Scholar 

  18. Guo Z, Chen G, Zeng G, Li Z, Chen A, Wang J, Jiang L. Fluorescence chemosensors for hydrogen sulfide detection in biological systems. Analyst (London), 2015, 140(6): 1772–1786

    Article  CAS  Google Scholar 

  19. Lin V S, Chen W, **an M, Chang C J. Chemical probes for molecular imaging and detection of hydrogen sulfide and reactive sulfur species in biological systems. Chemical Society Reviews, 2015, 44(14): 4596–4618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yi L, ** Z. Thiolysis of NBD-based dyes for colorimetric and fluorescence detection of H2S and biothiols: design and biological applications. Organic & Biomolecular Chemistry, 2017, 15(18): 3828–3839

    Article  CAS  Google Scholar 

  21. Lippert A R, New E J, Chang C J. Reaction-based fluorescent probes for selective imaging of hydrogen sulfide in living cells. Journal of the American Chemical Society, 2011, 133(26): 10078–10080

    Article  CAS  PubMed  Google Scholar 

  22. Chen W, Pacheco A, Takano Y, Day J J, Hanaoka K, **an M. A single fluorescent probe to visualize hydrogen sulfide and hydrogen polysulfides with different fluorescence signals. Angewandte Chemie International Edition, 2016, 128(34): 10147–10150

    Article  Google Scholar 

  23. Zhao Q, Huo F, Kang J, Zhang Y, Yin C. A novel FRET-based fluorescent probe for the selective detection of hydrogen sulfide (H2S) and its application for bioimaging. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2018, 6(30): 4903–4908

    Article  CAS  PubMed  Google Scholar 

  24. Jiao X, **ao Y, Li Y, Liang M, **e X, Wang X, Tang B. Evaluating drug-induced liver injury and its remission via discrimination and imaging of HClO and H2S with a two-photon fluorescent probe. Analytical Chemistry, 2018, 90(12): 7510–7516

    Article  CAS  PubMed  Google Scholar 

  25. Ren M, Li Z, Deng B, Wang L, Lin W. Single fluorescent probe separately and continuously visualize H2S and HClO in lysosomes with different fluorescence signals. Analytical Chemistry, 2019, 91 (4): 2932–2938

    Article  CAS  PubMed  Google Scholar 

  26. Wu Z, Liang D, Tang X. Visualizing hydrogen sulfide in mitochondria and lysosome of living cells and in tumors of living mice with positively charged fluorescent chemosensors. Analytical Chemistry, 2016, 88(18): 9213–9218

    Article  CAS  PubMed  Google Scholar 

  27. Deng B, Ren M, Wang J Y, Zhou K, Lin W. A mitochondrial-targeted two-photon fluorescent probe for imaging hydrogen sulfide in the living cells and mouse liver tissues. Sensors and Actuators. B, Chemical, 2017, 248: 50–56

    Article  CAS  Google Scholar 

  28. Tang Y, Xu A, Ma Y, Xu G, Gao S, Lin W. A turn-on endoplasmic reticulum-targeted two-photon fluorescent probe for hydrogen sulfide and bio-imaging applications in living cells, tissues, and zebrafish. Scientific Reports, 2017, 7(1): 1–9

    Article  Google Scholar 

  29. Fu Y J, Yao H W, Zhu X Y, Guo X F, Wang H. A cell surface specific two-photon fluorescent probe for monitoring intercellular transmission of hydrogen sulfide. Analytica Chimica Acta, 2017, 994: 1–9

    Article  CAS  PubMed  Google Scholar 

  30. Song X, Dong B, Kong X, Wang C, Zhang N, Lin W. A cancer cell-specific two-photon fluorescent probe for imaging hydrogen sulfide in living cells. RSC Advances, 2017, 7(26): 15817–15822

    Article  CAS  Google Scholar 

  31. Chen J, Zhao M, Jiang X, Sizovs A, Wang M C, Provost C R, Huang J, Wang J. Genetically anchored fluorescent probes for subcellular specific imaging of hydrogen sulfide. Analyst (London), 2016, 141(4): 1209–1213

    Article  CAS  Google Scholar 

  32. Zhu Z, Li Y, Wei C, Wen X, ** Z, Yi L. Multi-fluorinated azido coumarins for rapid and selective detection of biological H2S in living cells. Chemistry, an Asian Journal, 2016, 11(1): 68–71

    Article  CAS  PubMed  Google Scholar 

  33. Velusamy N, Binoy A, Bobba K N, Nedungadi D, Mishra N, Bhuniya S. A bioorthogonal fluorescent probe for mitochondrial hydrogen sulfide: new strategy for cancer cell labeling. Chemical Communications, 2017, 53(62): 8802–8805

    Article  CAS  PubMed  Google Scholar 

  34. **e Q L, Liu W, Liu X J, Ouyang F, Kuang Y Q, Jiang J H. An azidocoumarin-based fluorescent probe for imaging lysosomal hydrogen sulfide in living cells. Analytical Methods, 2017, 9(19): 2859–2864

    Article  CAS  Google Scholar 

  35. Liu K, Liu C, Shang H, Ren M, Lin W. A novel red light emissive two-photon fluorescent probe for hydrogen sulfide (H2S) in nucleolus region and its application for H2S detection in zebrafish and live mice. Sensors and Actuators. B, Chemical, 2018, 256: 342–350

    Article  CAS  Google Scholar 

  36. Qiao Z, Zhang H, Wang K, Zhang Y. A highly sensitive and responsive fluorescent probe based on 6-azide-chroman dye for detection and imaging of hydrogen sulfide in cells. Talanta, 2019, 195: 850–856

    Article  CAS  PubMed  Google Scholar 

  37. Dai C G, Liu X L, Du X J, Zhang Y, Song Q H. Two-input fluorescent probe for thiols and hydrogen sulfide chemosensing and live cell imaging. ACS Sensors, 2016, 1(7): 888–895

    Article  CAS  Google Scholar 

  38. Ren T B, Xu W, Zhang Q L, Zhang X X, Wen S Y, Yi H B, Yuan L, Zhang X B. Enhancing the anti-solvatochromic two-photon fluorescence for cirrhosis imaging by forming a hydrogen-bond network. Angewandte Chemie International Edition, 2018, 57(25): 7473–7477

    Article  CAS  PubMed  Google Scholar 

  39. Dou Y, Gu X, Ying S, Zhu S, Yu S, Shen W, Zhu Q. A novel lysosome-targeted fluorogenic probe based on 5-triazole-quinoline for the rapid detection of hydrogen sulfide in living cells. Organic & Biomolecular Chemistry, 2018, 16(5): 712–716

    Article  CAS  Google Scholar 

  40. Shen D, Liu J, Sheng L, Lv Y, Wu G, Wang P, Du K. Design, synthesis and evaluation of a novel fluorescent probe to accurately detect H2S in hepatocytes and natural waters. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2020, 228: 117690

    Article  CAS  Google Scholar 

  41. Zhu H, Liang C, Cai X, Zhang H, Liu C, Jia P, Li Z, Yu Y, Zhang X, Sheng W, Zhu B. Rational design of a targetable fluorescent probe for visualizing H2S production under Golgi stress response elicited by monensin. Analytical Chemistry, 2020, 92(2): 1883–1889

    Article  CAS  PubMed  Google Scholar 

  42. Bailey T S, Pluth M D. Chemiluminescent detection of enzymatically produced hydrogen sulfide: substrate hydrogen bonding influences selectivity for H2S over biological thiols. Journal of the American Chemical Society, 2013, 135(44): 16697–16704

    Article  CAS  PubMed  Google Scholar 

  43. Wang L, Chen X, Cao D. A nitroolefin functionalized DPP fluorescent probe for the selective detection of hydrogen sulfide. New Journal of Chemistry, 2017, 41(9): 3367–3373

    Article  CAS  Google Scholar 

  44. Zhou N, Yin C, Chao J, Zhang Y, Huo F. An isoxazole-accelerated nitro oxidation type fluorescent detection and imaging for hydrogen sulfide in cells. Sensors and Actuators. B, Chemical, 2019, 287: 131–137

    Article  CAS  Google Scholar 

  45. Li X, Cheng J, Gong Y, Yang B, Hu Y. Map** hydrogen sulfide in rats with a novel azo-based fluorescent probe. Biosensors & Bioelectronics, 2015, 65: 302–306

    Article  CAS  Google Scholar 

  46. Chen B, Huang J, Geng H, Xuan L, Xu T, Li X, Han Y. A new ESIPT-based fluorescent probe for highly selective and sensitive detection of hydrogen sulfide and its application in live-cell imaging. New Journal of Chemistry, 2017, 41(3): 1119–1123

    Article  CAS  Google Scholar 

  47. Lippert A R. Designing reaction-based fluorescent probes for selective hydrogen sulfide detection. Journal of Inorganic Biochemistry, 2014, 133: 136–142

    Article  CAS  PubMed  Google Scholar 

  48. Montoya L A, Pearce T F, Hansen R J, Zakharov L N, Pluth M D. Development of selective colorimetric probes for hydrogen sulfide based on nucleophilic aromatic substitution. Journal of Organic Chemistry, 2013, 78(13): 6550–6557

    Article  CAS  Google Scholar 

  49. Wu X, Shi J, Yang L, Han J, Han S. A near-infrared fluorescence dye for sensitive detection of hydrogen sulfide in serum. Bioorganic & Medicinal Chemistry Letters, 2014, 24(1): 314–316

    Article  CAS  Google Scholar 

  50. Li X, Tang Y, Li J, Hu X, Yin C, Yang Z, Wang Q, Wu Z, Lu X, Wang W, Huang W, Fan Q. A small-molecule probe for ratiometric photoacoustic imaging of hydrogen sulfide in living mice. Chemical Communications, 2019, 55(42): 5934–5937

    Article  CAS  PubMed  Google Scholar 

  51. Ren M, Deng B, Kong X, Zhou K, Liu K, Xu G, Lin W. A TICT-based fluorescent probe for rapid and specific detection of hydrogen sulfide and its bio-imaging applications. Chemical Communications, 2016, 52(38): 6415–6418

    Article  CAS  PubMed  Google Scholar 

  52. Feng X, Zhang T, Liu J T, Miao J Y, Zhao B X. A new ratiometric fluorescent probe for rapid, sensitive and selective detection of endogenous hydrogen sulfide in mitochondria. Chemical Communications, 2016, 52(15): 3131–3134

    Article  CAS  PubMed  Google Scholar 

  53. Liu Y, Meng F, He L, Liu K, Lin W. A dual-site two-photon fluorescent probe for visualizing lysosomes and tracking lysosomal hydrogen sulfide with two different sets of fluorescence signals in the living cells and mouse liver tissues. Chemical Communications, 2016, 52(43): 7016–7019

    Article  CAS  PubMed  Google Scholar 

  54. He L, Yang X, Liu Y, Weiying Lin W L. Colorimetric and ratiometric fluorescent probe for hydrogen sulfide using a coumarin-pyronine FRET dyad with a large emission shift. Analytical Methods, 2016, 8(45): 8022–8027

    Article  CAS  Google Scholar 

  55. Li Y, Gu B, Su W, Duan X, Xu H, Huang Z, Li H, Yao S. A simple and efficient fluorescent probe for the rapid detection of H2S in living cells and on agar gels. Analytical Methods, 2017, 9(22): 3290–3295

    Article  CAS  Google Scholar 

  56. Ma J, Li F, Li Q, Li Y, Yan C, Lu X, Guo Y. Naked-eye and ratiometric fluorescence probe for fast and sensitive detection of hydrogen sulfide and its application in bioimaging. New Journal of Chemistry, 2018, 42(23): 19272–19278

    Article  CAS  Google Scholar 

  57. Ma Y, Wang H, Su S, Chen Y, Li Y, Wang X, Wang Z. A red mitochondria-targeted AIEgen for visualizing H2S in living cells and tumours. Analyst (London), 2019, 144(10): 3381–3388

    Article  CAS  Google Scholar 

  58. Liu Y, Niu J, Wang W, Ma Y, Lin W. Simultaneous imaging of ribonucleic acid and hydrogen sulfide in living systems with distinct fluorescence signals using a single fluorescent probe. Advancement of Science, 2018, 5(7): 1700966

    Google Scholar 

  59. Cui J, Zhang T, Sun Y Q, Li D P, Liu J T, Zhao B X. A highly sensitive and selective fluorescent probe for H2S detection with large fluorescence enhancement. Sensors and Actuators. B, Chemical, 2016, 232: 705–711

    Article  CAS  Google Scholar 

  60. Zhang L, Zheng X E, Zou F, Shang Y, Meng W, Lai E, Xu Z, Liu Y, Zhao J. A highly selective and sensitive near-infrared fluorescent probe for imaging of hydrogen sulphide in living cells and mice. Scientific Reports, 2016, 6(1): 18868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang P, Nie X, Gao M, Zeng F, Qin A, Wu S, Tang B Z. A highly selective fluorescent nanoprobe based on AIE and ESIPT for imaging hydrogen sulfide in live cells and zebrafish. Materials Chemistry Frontiers, 2017, 1(5): 838–845

    Article  CAS  Google Scholar 

  62. Zhou L, Lu D, Wang Q, Liu S, Lin Q, Sun H. Molecular engineering of a mitochondrial-targeting two-photon in and near-infrared out fluorescent probe for gaseous signal molecules H2S in deep tissue bioimaging. Biosensors & Bioelectronics, 2017, 91: 699–705

    Article  CAS  Google Scholar 

  63. Gu B, Su W, Huang L, Wu C, Duan X, Li Y, Xu H, Huang Z, Li H, Yao S. Real-time tracking and selective visualization of exogenous and endogenous hydrogen sulfide by a near-infrared fluorescent probe. Sensors and Actuators. B, Chemical, 2018, 255: 2347–2355

    Article  CAS  Google Scholar 

  64. Qian M, Zhang L, Pu Z, **a J, Chen L, **a Y, Cui H, Wang J, Peng X. A NIR fluorescent probe for the detection and visualization of hydrogen sulfide using the aldehyde group assisted thiolysis of dinitrophenyl ether strategy. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2018, 6(47): 7916–7925

    Article  CAS  PubMed  Google Scholar 

  65. Chen S, Li H, Hou P. A novel imidazo[1,5-α]pyridine-based fluorescent probe with a large Stokes shift for imaging hydrogen sulfide. Sensors and Actuators. B, Chemical, 2018, 256: 1086–1092

    Article  CAS  Google Scholar 

  66. Ji Y, **a L J, Chen L, Guo X F, Wang H, Zhang H J. A novel BODIPY-based fluorescent probe for selective detection of hydrogen sulfide in living cells and tissues. Talanta, 2018, 181: 104–111

    Article  CAS  PubMed  Google Scholar 

  67. Li Y T, Zhao X J, Jiang Y R, Yang B Q. A novel long-wavelength fluorescent probe for selective detection of hydrogen sulfide in living cells. New Journal of Chemistry, 2018, 42(24): 19478–19484

    Article  CAS  Google Scholar 

  68. Liu J, Chen X, Zhang Y, Gao G, Zhang X, Hou S, Hou Y. A novel 3-hydroxychromone fluorescent probe for hydrogen sulfide based on an excited-state intramolecular proton transfer mechanism. New Journal of Chemistry, 2018, 42(15): 12918–12923

    Article  CAS  Google Scholar 

  69. Wu C, Hu X, Gu B, Yin P, Su W, Li Y, Lu Q, Zhang Y, Li H. A lysosome-targeting colorimetric and fluorescent dual signal probe for sensitive detection and bioimaging of hydrogen sulfide. Analytical Methods, 2018, 10(6): 604–610

    Article  CAS  Google Scholar 

  70. Yang L, Zhao J, Yu X, Zhang R, Han G, Liu R, Liu Z, Zhao T, Han M Y, Zhang Z. Dynamic map** of spontaneously produced H2S in the entire cell space and in live animals using a rationally designed molecular switch. Analyst (London), 2018, 143(8): 1881–1889

    Article  CAS  Google Scholar 

  71. Sun L, Wu Y, Chen J, Zhong J, Zeng F, Wu S. A turn-on optoacoustic probe for imaging metformin-induced upregulation of hepatic hydrogen sulfide and subsequent liver injury. Theranostics, 2019, 9(1): 77–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhao X J, Li Y T, Jiang Y R, Yang B Q, Liu C, Liu Z H. A novel “turn-on” mitochondria-targeting near-infrared fluorescent probe for H2S detection and in living cells imaging. Talanta, 2019, 197: 326–333

    Article  CAS  PubMed  Google Scholar 

  73. Zhu X Y, Wu H, Guo X F, Wang H. Novel BODIPY-based fluorescent probes with large stokes shift for imaging hydrogen sulfide. Dyes and Pigments, 2019, 165: 400–407

    Article  CAS  Google Scholar 

  74. Fang T, Jiang X D, Sun C, Li Q. BODIPY-based naked-eye fluorescent on-off probe with high selectivity for H2S based on thiolysis of dinitrophenyl ether. Sensors and Actuators. B, Chemical, 2019, 290: 551–557

    Article  CAS  Google Scholar 

  75. Su D, Cheng D, Lv Y, Ren X, Wu Q, Yuan L. A unique off-on near-infrared QCy7-derived probe for selective detection and imaging of hydrogen sulfide in cells and in vivo. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2020, 226: 117635

    Article  CAS  Google Scholar 

  76. Lin X, Lu X, Zhou J, Ren H, Dong X, Zhao W, Chen Z. Instantaneous fluorescent probe for the specific detection of H2S. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2019, 213: 416–422

    Article  CAS  Google Scholar 

  77. Zhang Y, Zhang B, Li Z, Wang L, Ren X, Ye Y. Endoplasmic reticulum targeted fluorescent probe for the detection of hydrogen sulfide based on a twist-blockage strategy. Organic & Biomolecular Chemistry, 2019, 17(38): 8778–8783

    Article  CAS  Google Scholar 

  78. Zhong K, Zhou S, Yan X, Li X, Hou S, Cheng L, Gao X, Li Y, Tang L. A simple H2S fluorescent probe with long wavelength emission: application in water, wine, living cells and detection of H2S gas. Dyes and Pigments, 2020, 174: 108049

    Article  CAS  Google Scholar 

  79. Ding S, Feng G. Smart probe for rapid and simultaneous detection and discrimination of hydrogen sulfide, cysteine/homocysteine, and glutathione. Sensors and Actuators. B, Chemical, 2016, 235: 691–697

    Article  CAS  Google Scholar 

  80. Ding S, Feng W, Feng G. Rapid and highly selective detection of H2S by nitrobenzofurazan (NBD) ether-based fluorescent probes with an aldehyde group. Sensors and Actuators. B, Chemical, 2017, 238: 619–625

    Article  CAS  Google Scholar 

  81. Wang R, Li Z, Zhang C, Li Y, Xu G, Zhang Q Z, Li L Y, Yi L, ** Z. Fast-response turn-on fluorescent probes based on thiolysis of NBD amine for H2S bioimaging. ChemBioChem, 2016, 17(10): 962–968

    Article  CAS  PubMed  Google Scholar 

  82. Grimm J B, English B P, Chen J, Slaughter J P, Zhang Z, Revyakin A, Patel R, Macklin J J, Normanno D, Singer R H, et al. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nature Methods, 2015, 12(3): 244–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ismail I, Wang D, Wang D, Niu C, Huang H, Yi L, ** Z. A mitochondria-targeted red-emitting probe for imaging hydrogen sulfide in living cells and zebrafish. Organic & Biomolecular Chemistry, 2019, 17(13): 3389–3395

    Article  CAS  Google Scholar 

  84. Wei C, Wei L, ** Z, Yi L. A FRET-based fluorescent probe for imaging H2S in living cells. Tetrahedron Letters, 2013, 54(50): 6937–6939

    Article  CAS  Google Scholar 

  85. Ismail I, Wang D, Wang Z, Wang D, Zhang C, Yi L, ** Z. A julolidine-fused coumarin-NBD dyad for highly selective and sensitive detection of H2S in biological samples. Dyes and Pigments, 2019, 163: 700–706

    Article  CAS  Google Scholar 

  86. Huang Y, Zhang C, ** Z, Yi L. Synthesis and characterizations of a highly sensitive and selective fluorescent probe for hydrogen sulfide. Tetrahedron Letters, 2016, 57(10): 1187–1191

    Article  CAS  Google Scholar 

  87. Zhang H, Chen J, **ong H, Zhang Y, Chen W, Sheng J, Song X. An endoplasmic reticulum-targetable fluorescent probe for highly selective detection of hydrogen sulfide. Organic & Biomolecular Chemistry, 2019, 17(6): 1436–1441

    Article  CAS  Google Scholar 

  88. Pak Y L, Li J, Ko K C, Kim G, Lee J Y, Yoon J. Mitochondria-targeted reaction-based fluorescent probe for hydrogen sulfide. Analytical Chemistry, 2016, 88(10): 5476–5481

    Article  CAS  PubMed  Google Scholar 

  89. Hou P, Li H, Chen S. A highly selective and sensitive 3-hydroxyflavone-based colorimetric and fluorescent probe for hydrogen sulfide with a large Stokes shift. Tetrahedron, 2016, 72 (24): 3531–3534

    Article  CAS  Google Scholar 

  90. Kang J, Huo F, Ning P, Meng X, Chao J, Yin C. Two red-emission single and double’ arms’ fluorescent materials stemed from ‘one-pot’ reaction for hydrogen sulfide vivo imaging. Sensors and Actuators. B, Chemical, 2017, 250: 342–350

    Article  CAS  Google Scholar 

  91. Zhang J, Ji X, Zhou J, Chen Z, Dong X, Zhao W. Pyridinium substituted BODIPY as NIR fluorescent probe for simultaneous sensing of hydrogen sulphide/glutathione and cysteine/homocysteine. Sensors and Actuators. B, Chemical, 2018, 257: 1076–1082

    Article  CAS  Google Scholar 

  92. Wang Y, Lv X, Guo W. A reaction-based and highly selective fluorescent probe for hydrogen sulfide. Dyes and Pigments, 2017, 139: 482–486

    Article  CAS  Google Scholar 

  93. **ong J, **a L, Huang Q, Huang J, Gu Y, Wang P. Cyanine-based NIR fluorescent probe for monitoring H2S and imaging in living cells and in vivo. Talanta, 2018, 184: 109–114

    Article  CAS  PubMed  Google Scholar 

  94. Tang Y, Jiang G F. A novel two-photon fluorescent probe for hydrogen sulfide in living cells using an acedan-NBD amine dyad based on FRET process with high selectivity and sensitivity. New Journal of Chemistry, 2017, 41(14): 6769–6774

    Article  CAS  Google Scholar 

  95. Cui L, Zhong Y, Zhu W, Xu Y, Du Q, Wang X, Qian X, **ao Y. A new prodrug-derived ratiometric fluorescent probe for hypoxia: high selectivity of nitroreductase and imaging in tumor cell. Organic Letters, 2011, 13(5): 928–931

    Article  CAS  PubMed  Google Scholar 

  96. Zhang L, Meng W Q, Lu L, Xue Y S, Li C, Zou F, Liu Y, Zhao J. Selective detection of endogenous H2S in living cells and the mouse hippocampus using a ratiometric fluorescent probe. Scientific Reports, 2015, 4(1): 5870

    Article  Google Scholar 

  97. Zhang H, **e Y, Wang P, Chen G, Liu R, Lam Y W, Hu Y, Zhu Q, Sun H. An iminocoumarin benzothiazole-based fluorescent probe for imaging hydrogen sulfide in living cells. Talanta, 2015, 135: 149–154

    Article  CAS  PubMed  Google Scholar 

  98. Wang J, Chen Y, Yang C, Wei T, Han Y, **a M. An ICT-based colorimetric and ratiometric fluorescent probe for hydrogen sulfide and its application in live cell imaging. RSC Advances, 2016, 6 (39): 33031–33035

    Article  CAS  Google Scholar 

  99. Steiger A K, Pardue S, Kevil C G, Pluth M D. Self-Immolative thiocarbamates provide access to triggered H2S donors and analyte replacement fluorescent probes. Journal of the American Chemical Society, 2016, 138(23): 7256–7259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Feng W, Mao Z, Liu L, Liu Z. A ratiometric two-photon fluorescent probe for imaging hydrogen sulfide in lysosomes. Talanta, 2017, 167: 134–142

    Article  CAS  PubMed  Google Scholar 

  101. Thirumalaivasan N, Venkatesan P, Wu S P. Highly selective turn-on probe for H2S with imaging applications in vitro and in vivo. New Journal of Chemistry, 2017, 41(22): 13510–13515

    Article  CAS  Google Scholar 

  102. Park C S, Ha T H, Choi S A, Nguyen D N, Noh S, Kwon O S, Lee C S, Yoon H. A near-infrared “turn-on” fluorescent probe with a self-immolative linker for the in vivo quantitative detection and imaging of hydrogen sulfide. Biosensors & Bioelectronics, 2017, 89: 919–926

    Article  CAS  Google Scholar 

  103. Li S J, Li Y F, Liu H W, Zhou D Y, Jiang W L, Ou Yang J, Li C Y. A dual-response fluorescent probe for the detection of viscosity and H2S and its application in studying their cross-talk influence in mitochondria. Analytical Chemistry, 2018, 90(15): 9418–9425

    Article  CAS  PubMed  Google Scholar 

  104. Zhao Q, Yin C, Kang J, Wen Y, Huo F. A viscosity sensitive azidepyridine BODIPY-based fluorescent dye for imaging of hydrogen sulfide in living cells. Dyes and Pigments, 2018, 159: 166–172

    Article  CAS  Google Scholar 

  105. Zhou T, Yang Y, Zhou K, ** M, Han M, Li W, Yin C. Efficiently mitochondrial targeting fluorescent imaging of H2S in vivo based on a conjugate-lengthened cyanine NIR fluorescent probe. Sensors and Actuators. B, Chemical, 2019, 301: 127116

    Article  CAS  Google Scholar 

  106. Yang L, Su Y, Sha Z, Geng Y, Qi F, Song X. A red-emitting fluorescent probe for hydrogen sulfide in living cells with a large stokes shift. Organic & Biomolecular Chemistry, 2018, 16(7): 1150–1156

    Article  CAS  Google Scholar 

  107. Zhu L, Liao W, Chang H, Liu X, Miao S. A novel fluorescent probe for detection of hydrogen sulfide and its bioimaging applications in living cells. ChemistrySelect, 2020, 5(2): 829–833

    Article  CAS  Google Scholar 

  108. Li D P, Zhang J F, Cui J, Ma X F, Liu J T, Miao J Y, Zhao B X. A ratiometric fluorescent probe for fast detection of hydrogen sulfide and recognition of biological thiols. Sensors and Actuators. B, Chemical, 2016, 234: 231–238

    Article  CAS  Google Scholar 

  109. Kang J, Huo F, Yin C. A novel ratiometric fluorescent H2S probe based on tandem nucleophilic substitution/cyclization reaction and its bioimaging. Dyes and Pigments, 2017, 146: 287–292

    Article  CAS  Google Scholar 

  110. Men J, Yang X, Zhang H, Zhou J. A near-infrared fluorescent probe based on nucleophilic substitution-cyclization for selective detection of hydrogen sulfide and bioimaging. Dyes and Pigments, 2018, 153: 206–212

    Article  CAS  Google Scholar 

  111. Zhang X, Sun R, Duan G, Zhou Z, Luo Y, Li W, Zhang L, Gu Y, Zha X. A highly sensitive near-infrared fluorescent probe for the detection of hydrogen sulfide and its application in living cells and mice. New Journal of Chemistry, 2018, 42(24): 19795–19800

    Article  CAS  Google Scholar 

  112. Cao T, Teng Z, Gong D, Qian J, Liu W, Iqbal K, Qin W, Guo H. A ratiometric fluorescent probe for detection of endogenous and exogenous hydrogen sulfide in living cells. Talanta, 2019, 198: 185–192

    Article  CAS  PubMed  Google Scholar 

  113. Wang H, Yang D, Tan R, Zhou Z J, Xu R, Zhang J F, Zhou Y. A cyanine-based colorimetric and fluorescence probe for detection of hydrogen sulfide in vivo. Sensors and Actuators. B, Chemical, 2017, 247: 883–888

    Article  CAS  Google Scholar 

  114. Wang J, Wen Y, Huo F, Yin C. A highly sensitive fluorescent probe for hydrogen sulfide based on dicyanoisophorone and its imaging in living cells. Sensors and Actuators. B, Chemical, 2019, 294: 141–147

    Article  CAS  Google Scholar 

  115. Guan H, Zhang A, Li P, **a L, Guo F. ESIPT fluorescence probe based on double-switch recognition mechanism for selective and rapid detection of hydrogen sulfide in living cells. ACS Omega, 2019, 4(5): 9113–9119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Qian Y, Karpus J, Kabil O, Zhang S Y, Zhu H L, Banerjee R, Zhao J, He C. Selective fluorescent probes for live-cell monitoring of sulphide. Nature Communications, 2011, 2(1): 495

    Article  PubMed  Google Scholar 

  117. Li X, Zhang S, Cao J, **e N, Liu T, Yang B, He Q, Hu Y. An ICT-based fluorescent switch-on probe for hydrogen sulfide in living cells. Chemical Communications, 2013, 49(77): 8656–8658

    Article  CAS  PubMed  Google Scholar 

  118. Singha S, Kim D, Moon H, Wang T, Kim K H, Shin Y H, Jung J, Seo E, Lee S J, Ahn K H. Toward a selective, sensitive, fast-responsive, and biocompatible two-photon probe for hydrogen sulfide in live cells. Analytical Chemistry, 2015, 87(2): 1188–1195

    Article  CAS  PubMed  Google Scholar 

  119. Ryu H G, Singha S, Jun Y W, Reo Y J, Ahn K H. Two-photon fluorescent probe for hydrogen sulfide based on a red-emitting benzocoumarin dye. Tetrahedron Letters, 2018, 59(1): 49–53

    Article  CAS  Google Scholar 

  120. Chen X, Wu S, Han J, Han S. Rhodamine-propargylic esters for detection of mitochondrial hydrogen sulfide in living cells. Bioorganic & Medicinal Chemistry Letters, 2013, 23(19): 5295–5299

    Article  CAS  Google Scholar 

  121. Sathyadevi P, Chen Y J, Wu S C, Chen Y H, Wang Y M. Reaction-based epoxide fluorescent probe for in vivo visualization of hydrogen sulfide. Biosensors & Bioelectronics, 2015, 68: 681–687

    Article  CAS  Google Scholar 

  122. Karakus E, Ucuncu M, Emrullahoglu M. Electrophilic cyanate as a recognition motif for reactive sulfur species: selective fluorescence detection of H2S. Analytical Chemistry, 2016, 88(1): 1039–1043

    Article  CAS  PubMed  Google Scholar 

  123. Xu G, Yan Q, Lv X, Zhu Y, **n K, Shi B, Wang R, Chen J, Gao W, Shi P, Fan C, Zhao C, Tian H. Imaging of colorectal cancers using activatable nanoprobes with second near-infrared window emission. Angewandte Chemie International Edition, 2018, 57(14): 3626–3630

    Article  CAS  PubMed  Google Scholar 

  124. Zhao Z, Cao L, Zhang T, Hu R, Wang S, Li S, Li Y, Yang G. Novel reaction-based fluorescence probes for the detection of hydrogen sulfide in living cells. ChemistrySelect, 2016, 1(11): 2581–2585

    Article  CAS  Google Scholar 

  125. Kaushik R, Ghosh A, Singh A, Jose D A. Colorimetric sensor for the detection of H2S and its application in molecular half-subtracter. Analytica Chimica Acta, 2018, 1040: 177–186

    Article  CAS  PubMed  Google Scholar 

  126. Wang C, Cheng X, Tan J, Ding Z, Wang W, Yuan D, Li G, Zhang H, Zhang X. Reductive cleavage of C = C bonds as a new strategy for turn-on dual fluorescence in effective sensing of H2S. Chemical Science (Cambridge), 2018, 9(44): 8369–8374

    Article  CAS  Google Scholar 

  127. Choi M G, Cha S, Lee H, Jeon H L, Chang S K. Sulfide-selective chemosignaling by a Cu2+ complex of dipicolylamine appended fluorescein. Chemical Communications, 2009, (47): 7390–7392

  128. Hou J T, Liu B Y, Li K, Yu K K, Wu M B, Yu X Q. Two birds with one stone: multifunctional and highly selective fluorescent probe for distinguishing Zn2+ from Cd2+ and selective recognition of sulfide anion. Talanta, 2013, 116: 434–440

    Article  CAS  PubMed  Google Scholar 

  129. Yue X, Zhu Z, Zhang M, Ye Z. Reaction-based turn-on electrochemiluminescent sensor with a ruthenium(II) complex for selective detection of extracellular hydrogen sulfide in rat brain. Analytical Chemistry, 2015, 87(3): 1839–1845

    Article  CAS  PubMed  Google Scholar 

  130. Lv H J, Ma R F, Zhang X T, Li M H, Wang Y T, Wang S, **ng G W. Surfactant-modulated discriminative sensing of HNO and H2S with a Cu2+-complex-based fluorescent probe. Tetrahedron, 2016, 72(35): 5495–5501

    Article  CAS  Google Scholar 

  131. Sasakura K, Hanaoka K, Shibuya N, Mikami Y, Kimura Y, Komatsu T, Ueno T, Terai T, Kimura H, Nagano T. Development of a highly selective fluorescence probe for hydrogen sulfide. Journal of the American Chemical Society, 2011, 133(45): 18003–18005

    Article  CAS  PubMed  Google Scholar 

  132. Wu H, Krishnakumar S, Yu J, Liang D, Qi H, Lee Z W, Deng L W, Huang D. Highly selective and sensitive near-infrared-fluorescent probes for the detection of cellular hydrogen sulfide and the imaging of H2S in mice. Chemistry, an Asian Journal, 2014, 9(12): 3604–3611

    Article  CAS  PubMed  Google Scholar 

  133. Ye Z, An X, Song B, Zhang W, Dai Z, Yuan J. A novel dinuclear ruthenium(II)-copper(II) complex-based luminescent probe for hydrogen sulfide. Dalton Transactions (Cambridge, England), 2014, 43(34): 13055–13060

    Article  CAS  Google Scholar 

  134. Palanisamy S, Lee L Y, Wang Y L, Chen Y J, Chen C Y, Wang Y M. A water soluble and fast response fluorescent turn-on copper complex probe for H2S detection in zebra fish. Talanta, 2016, 147: 445–452

    Article  CAS  PubMed  Google Scholar 

  135. Cao X, Lin W, He L. A near-infrared fluorescence turn-on sensor for sulfide anions. Organic Letters, 2011, 13(17): 4716–4719

    Article  CAS  PubMed  Google Scholar 

  136. Hou F, Huang L, ** P, Cheng J, Zhao X, **e G, Shi Y, Cheng F, Yao X, Bai D, Zeng Z. A retrievable and highly selective fluorescent probe for monitoring sulfide and imaging in living cells. Inorganic Chemistry, 2012, 51(4): 2454–2460

    Article  CAS  PubMed  Google Scholar 

  137. Hou F, Cheng J, ** P, Chen F, Huang L, **e G, Shi Y, Liu H, Bai D, Zeng Z. Recognition of copper and hydrogen sulfide in vitro using a fluorescein derivative indicator. Dalton Transactions (Cambridge, England), 2012, 41(19): 5799–5804

    Article  CAS  Google Scholar 

  138. Kar C, Adhikari M D, Ramesh A, Das G. NIR- and FRET-based sensing of Cu2+ and S2− in physiological conditions and in live cells. Inorganic Chemistry, 2013, 52(2): 743–752

    Article  CAS  PubMed  Google Scholar 

  139. Tang L, Dai X, Cai M, Zhao J, Zhou P, Huang Z. Relay recognition of Cu2+ and S2− in water by a simple 2-(2′-aminophenyl) benzimidazole derivatized fluorescent sensor through modulating ESIPT. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2014, 122: 656–660

    Article  CAS  Google Scholar 

  140. Qian Y, Lin J, Liu T, Zhu H. Living cells imaging for copper and hydrogen sulfide by a selective “on-off-on” fluorescent probe. Talanta, 2015, 132: 727–732

    Article  CAS  PubMed  Google Scholar 

  141. Meng Q, Shi Y, Wang C, Jia H, Gao X, Zhang R, Wang Y, Zhang Z. NBD-based fluorescent chemosensor for the selective quantification of copper and sulfide in an aqueous solution and living cells. Organic & Biomolecular Chemistry, 2015, 13(10): 2918–2926

    Article  CAS  Google Scholar 

  142. Hai Z, Bao Y, Miao Q, Yi X, Liang G. Pyridine-biquinoline-metal complexes for sensing pyrophosphate and hydrogen sulfide in aqueous buffer and in cells. Analytical Chemistry, 2015, 87(5): 2678–2684

    Article  CAS  PubMed  Google Scholar 

  143. Liu J, Guo X, Hu R, Liu X, Wang S, Li S, Li Y, Yang G. Molecular engineering of aqueous soluble triarylboron-compound-based two-photon fluorescent probe for mitochondria H2S with analyte-anduced finite aggregation and excellent membrane permeability. Analytical Chemistry, 2016, 88(1): 1052–1057

    Article  CAS  PubMed  Google Scholar 

  144. Yang L, Wang J, Yang L, Zhang C, Zhang R, Zhang Z, Liu B, Jiang C. Fluorescent paper sensor fabricated by carbazole-based probes for dual visual detection of Cu2+ and gaseous H2S. RSC Advances, 2016, 6(61): 56384–56391

    Article  CAS  Google Scholar 

  145. Wang P, Wu J, Di C, Zhou R, Zhang H, Su P, Xu C, Zhou P, Ge Y, Liu D, Liu W, Tang Y. A novel peptide-based fluorescence chemosensor for selective imaging of hydrogen sulfide both in living cells and zebrafish. Biosensors & Bioelectronics, 2017, 92: 602–609

    Article  CAS  Google Scholar 

  146. Rajasekaran D, Venkatachalam K, Periasamy V. “On-off-on” pyrene-based fluorescent chemosensor for the selective recognition of Cu2+ and S2− ions and its utilization in live cell imaging. Applied Organometallic Chemistry, 2020, 34(3): e5342

    Google Scholar 

  147. Qu X, Li C, Chen H, Mack J, Guo Z, Shen Z. A red fluorescent turn-on probe for hydrogen sulfide and its application in living cells. Chemical Communications, 2013, 49(68): 7510–7512

    Article  CAS  PubMed  Google Scholar 

  148. Sun M, Yu H, Li H, Xu H, Huang D, Wang S. Fluorescence signaling of hydrogen sulfide in broad pH range using a copper complex based on BINOL-benzimidazole ligands. Inorganic Chemistry, 2015, 54(8): 3766–3772

    Article  CAS  PubMed  Google Scholar 

  149. Li X, Yang C, Wu K, Hu Y, Han Y, Liang S H. A highly specific probe for sensing hydrogen sulfide in live cells based on copper-initiated fluorogen with aggregation-induced emission characteristics. Theranostics, 2014, 4(12): 1233–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kawagoe R, Takashima I, Usui K, Kanegae A, Ozawa Y, Ojida A. Rational design of a ratiometric fluorescent probe based on arenemetal-ion contact for endogenous hydrogen sulfide detection in living cells. ChemBioChem, 2015, 16(11): 1608–1615

    Article  CAS  PubMed  Google Scholar 

  151. Ma F, Sun M, Zhang K, Yu H, Wang Z, Wang S. A turn-on fluorescent probe for selective and sensitive detection of hydrogen sulfide. Analytica Chimica Acta, 2015, 879: 104–110

    Article  CAS  PubMed  Google Scholar 

  152. Gupta N, Reja S I, Bhalla V, Kumar M. Fluorescent probes for hydrogen polysulfides (H2Sn, n > 1): from design rationale to applications. Organic & Biomolecular Chemistry, 2017, 15(32): 6692–6701

    Article  CAS  Google Scholar 

  153. Liu C, Chen W, Shi W, Peng B, Zhao Y, Ma H, **an M. Rational design and bioimaging applications of highly selective fluorescence probes for hydrogen polysulfides. Journal of the American Chemical Society, 2014, 136(20): 7257–7260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ma J, Fan J, Li H, Yao Q, Xu F, Wang J, Peng X. A NIR fluorescent chemodosimeter for imaging endogenous hydrogen polysulfides via the CSE enzymatic pathway. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2017, 5(14): 2574–2579

    Article  CAS  PubMed  Google Scholar 

  155. Li K B, Chen F Z, Yin Q H, Zhang S, Shi W, Han D M. A colorimetric and near-infrared fluorescent probe for hydrogen polysulfides and its application in living cells. Sensors and Actuators. B, Chemical, 2018, 254: 222–226

    Article  CAS  Google Scholar 

  156. Zhao L, Sun Q, Sun C, Zhang C, Duan W, Gong S, Liu Z. An isophorone-based far-red emitting ratiometric fluorescent probe for selective sensing and imaging of polysulfides. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2018, 6(43): 7015–7020

    Article  CAS  PubMed  Google Scholar 

  157. Hou P, Wang J, Fu S, Liu L, Chen S. A new turn-on fluorescent probe with ultra-large fluorescence enhancement for detection of hydrogen polysulfides based on dual quenching strategy. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2019, 213: 342–346

    Article  CAS  Google Scholar 

  158. Li W, Zhou S, Zhang L, Yang Z, Chen H, Chen W, Qin J, Shen X, Zhao S. A red emitting fluorescent probe for sensitively monitoring hydrogen polysulfides in living cells and zebrafish. Sensors and Actuators. B, Chemical, 2019, 284: 30–35

    Article  CAS  Google Scholar 

  159. Liu J, Yin Z. A resorufin-based fluorescent probe for imaging polysulfides in living cells. Analyst (London), 2019, 144(10): 3221–3225

    Article  CAS  Google Scholar 

  160. Zhang C, Sun Q, Zhao L, Gong S, Liu Z. A BODIPY-based ratiometric probe for sensing and imaging hydrogen polysulfides in living cells. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2019, 223: 117295

    Article  CAS  Google Scholar 

  161. Fang Q, Yue X, Han S, Wang B, Song X. A rapid and sensitive fluorescent probe for detecting hydrogen polysulfides in living cells and zebra fish. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2020, 224: 117410

    Article  CAS  Google Scholar 

  162. Wang C, Xu J, Ma Q, Bai Y, Tian M, Sun J, Zhang Z. A highly selective fluorescent probe for hydrogen polysulfides in living cells based on a naphthalene derivative. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2020, 227: 117579

    Article  CAS  Google Scholar 

  163. Zhao X, He F, Dai Y, Ma F, Qi Z. A single fluorescent probe for one- and two-photon imaging hydrogen sulfide and hydrogen polysulfides with different fluorescence signals. Dyes and Pigments, 2020, 172: 107818

    Article  CAS  Google Scholar 

  164. Ren Y, Zhang L, Zhou Z, Luo Y, Wang S, Yuan S, Gu Y, Xu Y, Zha X. A new lysosome-targetable fluorescent probe with a large Stokes shift for detection of endogenous hydrogen polysulfides in living cells. Analytica Chimica Acta, 2019, 1056: 117–124

    Article  CAS  PubMed  Google Scholar 

  165. Han Q, Liu X, Wang X, Yin R, Jiang H, Ru J, Liu W. Rational design of a lysosomal-targeted ratiometric two-photon fluorescent probe for imaging hydrogen polysulfides in live cells. Dyes and Pigments, 2020, 173: 107877

    Article  CAS  Google Scholar 

  166. Zhang X, Zhang L, Gao M, Wang Y, Chen L. A near-infrared fluorescent probe for observing thionitrous acid-mediated hydrogen polysulfides formation and fluctuation in cells and in vivo under hypoxia stress. Journal of Hazardous Materials, 2020, 396: 122673

    Article  CAS  PubMed  Google Scholar 

  167. Fang Y, Chen W, Shi W, Li H, **an M, Ma H. A near-infrared fluorescence off-on probe for sensitive imaging of hydrogen polysulfides in living cells and mice in vivo. Chemical Communications, 2017, 53(62): 8759–8762

    Article  CAS  PubMed  Google Scholar 

  168. Yang F, Gao H, Li S S, An R B, Sun X Y, Kang B, Xu J J, Chen H Y. A fluorescent tau-probe: quantitative imaging of ultra-trace endogenous hydrogen polysulfide in cells and in vivo. Chemical Science (Cambridge), 2018, 9(25): 5556–5563

    Article  CAS  Google Scholar 

  169. Hoskere A A, Sreedharan S, Ali F, Smythe C G, Thomas J A, Das A. Polysulfide-triggered fluorescent indicator suitable for superresolution microscopy and application in imaging. Chemical Communications, 2018, 54(30): 3735–3738

    Article  Google Scholar 

  170. Choi H J, Lim C S, Cho M K, Kang J S, Park S J, Park S M, Kim H M. A two-photon ratiometric probe for hydrogen polysulfide (H2Sn): increase in mitochondrial H2Sn production in a Parkinson’s disease model. Sensors and Actuators. B, Chemical, 2019, 283: 810–819

    Article  CAS  Google Scholar 

  171. Liang L, Li W, Zheng J, Li R, Chen H, Yuan Z. A new lysosometargetable fluorescent probe for detection of endogenous hydrogen polysulfides in living cells and inflamed mouse model. Biomaterials Science, 2020, 8(1): 224–231

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by China Postdoctoral Science Foundation (Grant No. 2019M652053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **n Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Chen, Y., Shao, B. et al. Recent advances of small-molecule fluorescent probes for detecting biological hydrogen sulfide. Front. Chem. Sci. Eng. 16, 34–63 (2022). https://doi.org/10.1007/s11705-021-2050-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-021-2050-1

Keywords

Navigation