Log in

Transpiration and growth responses by Eucalyptus species to progressive soil drying

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

The regulation of plant transpiration is a key factor affecting transpiration efficiency, growth and adaptation of Eucalyptus species to limited water availability in tropical and subtropical environments. However, few studies have related this trait to the performance of Eucalyptus seedlings and none have investigated the influence of vapor pressure deficit (VPD) on transpiration rates and growth. In this study, the transpiration and growth responses of seedlings of Eucalyptus urophylla (S.T. Blake) and Eucalyptus cloeziana (F. Muell.) to progressive soil water deficits were evaluated under semi-controlled conditions using the fraction of transpirable soil water (FTSW) method. In addition, the influence of VPD on seedling transpiration, development and growth was also investigated. The FTSW threshold ranged from 0.40 to 0.99 for the transpiration rate and from 0.32 to 0.97 for the development and growth variables. Little or no changes in the FTSW threshold were detected in response to changes in atmospheric VPD. Both Eucalyptus species presented a conservation strategy under drought stress. In addition, water-conserving mechanisms during the seedling phase were related to rapid stomatal closure, reduced leaf area, and number of leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FTSW:

Fraction of transpirable soil water

FTSWt:

Threshold fraction of transpirable soil water

TR:

Transpiration rate

NTR:

Normalized transpiration

NNL:

Normalized number of leaves

NLA:

Normalized leaf area

NH:

Normalized height

ND:

Normalized diameter

WW:

Well- watered

WD:

Water deficit

VPD:

Vapor pressure deficit

VPDh:

High vapor pressure deficit

VPDl:

Low vapor pressure deficit

Tavg :

Mean temperature

Tmax :

Maximum temperature

Tmin :

Minimum temperature

RH:

Relative humidity

esavg :

Average saturation water vapor pressure using Tmin and Tmax

esmin :

Saturation water vapor pressure using Tmin

esmax :

Saturation water vapor pressure using Tmax

eaavg :

Average actual water vapor pressure using Tmin and Tmax

eamin :

Actual water vapor pressure using Tmin

eamax :

Actual water vapor pressure using Tmax

E1:

Experiment 1

E2:

Experiment 2

References

  • Abreu MC (2014) Transpiração e parâmetros de crescimento e desenvolvimento em mudas de espécies florestais submetidas a deficiência hídrica. Dissertation, Universidade Federal de Itajubá

  • Abreu MC, Martins FB, Freitas CH, Pereira RAA, Melloni EGP (2015) Valores limítrofes para transpiração desenvolvimento e crescimento de Corymbia citriodora (Hook) KD Hill and LAS Johnson em resposta à deficiência hídrica no solo. Rev Árvore 39(5):841–852

    Article  Google Scholar 

  • Adiredjo AL, Casadebaig P, Langlade N, Lamaze T, Grieu P (2018) Genetic analysis of the transpiration control in sunflower (Helianthus annuus L.) subjected to drought. Vegetos 31(1):1–6

    Google Scholar 

  • Barros NF, Novais RF (1999) Eucalipto. In: Recomendações para o uso de corretivos e fertilizantes em Minas Gerais: 5ª aproximação. Ribeiro et al. (eds) CFSEMG/ UFV Viçosa, MG, pp 303–305

  • Bimpong IK, Serraj R, Chin JH, Serraj R, Ramos J (2011) Determination of genetic variability for physiological traits related to drought tolerance in African rice (Oryza glaberrima). J Plant Breed Crop Sci 3(4):60–67

    Google Scholar 

  • Bindi M, Bellesi S, Orlandini S, Fibbi L, Moriondo M, Sinclair TR (2005) Influence of water deficit stress on leaf area development and transpiration of sangiovese grapevines grown in pots. Am J Enol Vitic 56:68–72

    Article  Google Scholar 

  • Casadebaig P, Debaeke P, Lecoeur L (2008) Thresholds for leaf expansion and transpiration response to soil water deficit in a range of sunflower genotypes. Eur J Agron 28(4):646–654

    Article  Google Scholar 

  • Cathey SE, Kruse JK, Sinclair TR, Dukes MD (2013) Transpiration and visual appearance of warm season turf grasses during soil drying. Environ Exp Bot 89:36–43

    Article  Google Scholar 

  • Cook RL, Binkley D, Stape JL (2016) Eucalyptus plantation effects on soil carbon after 20 years and three rotations in Brazil. For Ecol Manage 359(1):92–98

    Article  Google Scholar 

  • Devi MJ, Reddy VR (2018) Transpiration response of cotton to vapor pressure deficit and its relationship with stomatal traits. Front Plant Sci 871:1–12

    Google Scholar 

  • Devi MJ, Reddy VR (2020) Stomatal closure response to soil drying at different vapor pressure deficit conditions in maize. Plant Physiol Biochem 154:714–722

    Article  CAS  PubMed  Google Scholar 

  • Devi MJ, Sinclair TR, Vadez V (2010) Genotypic variation in peanut for transpiration response to vapor pressure deficit. Crop Sci 50:191–196

    Article  Google Scholar 

  • Devi MJ, Sinclair TR, Vadez V, Krishnamurthy L (2009) Peanut genotypic variation in transpiration efficiency and decreased transpiration during progressive soil drying. Field Crop Res 114(2):280–285

    Article  Google Scholar 

  • Elli EF, Sentelhas PC, Bender FD (2020) Impacts and uncertainties of climate change projections on Eucalyptus plantations productivity across Brazil. For Ecol Manage 474(15):118365

    Article  Google Scholar 

  • Esmaeilzade-Moridani M, Kamkar B, Galeshi S, Ghaderi-Far F, Silva JAT (2015) Leaf expansion and transpiration responses of millet species to soil water deficit. Pedosphere 25(6):834–843

    Article  Google Scholar 

  • Fuentealba MP, Zhang J, Kenworthy K, Erickson J, Kruse J, Trenholm L (2016) Transpiration responses of warm-season turf grass in relation to progressive soil drying. Sci Hortic 198(26):249–253

    Article  Google Scholar 

  • Gholipoor M, Sinclair TR, Prasad PVV (2012) Genotypic variation within sorghum for transpiration response to drying soil. Plant Soil 357:35–40

    Article  CAS  Google Scholar 

  • Gonçalves JLM, Alvares CAA, Rocha JHT, Brondani CB, Hakamada R (2017) Eucalypt plantation management in regions with water stress. Southern For 79(3):169–183

    Google Scholar 

  • Granier A, Biron P, Lemoine D (2000) Water balance transpiration and canopy conductance in two beech stands. Agric for Meteorol 100(4):291–308

    Article  Google Scholar 

  • Guha A, Chhajed SS, Choudhary S, Sunny R, Jansen S, Barua D (2018) Hydraulic anatomy affects genotypic variation in plant water use and shows differential organ specific plasticity to drought in Sorghum bicolor. Environ Exp Bot 156:25–37

    Article  Google Scholar 

  • Hainaut P, Remacle T, Decamps C, Lambert R, Sadok W (2016) Higher forage yields under temperate drought explained by lower transpiration rates under increasing evaporative demand. Eur J Agron 72:91–98

    Article  Google Scholar 

  • Heinemann AB, Stone LF, Fageria NK (2011) Transpiration rate response to water deficit during vegetative and reproductive phases of upland rice cultivars. Sci Agric 68(1):24–30

    Article  Google Scholar 

  • Hu YB, **e W, Chen BD (2020) Arbuscular mycorrhizal symbiosis improves drought tolerance of maize seedlings by altering photosystem II efficiency and the levels of key metabolites. Chem Biol Technol Agric 7:20. https://doi.org/10.1186/s40538-020-00186-4

    Article  CAS  Google Scholar 

  • Hubbard RM, Carneiro RL, Campoe O, Alvares CA, Figura MA, Moreira GG (2020) Contrasting water use of two Eucalyptus clones across a precipitation and temperatures gradient in Brazil. For Ecol Manag 475(1):118407

    Article  Google Scholar 

  • IBÁ (2019). Brazilian Industry of Trees Report 2019. www.https://ibaorg/datafiles/publicacoes/relatorios/iba-relatorioanual2019.pdf. Accessed on 28 May 2020

  • Irvini J, Perks MP, Magnani F, Grace J (1998) The response of Pinus sylvestris to drought: stomatal control of transpiration and hydraulic conductance. Tree Physiol 18:393–402

    Article  Google Scholar 

  • Kelling CRS, Reichardt K, Streck NA, Lago I, Zanon AJ, Rodrigues MA (2015) Transpiração e crescimento foliar de crisântemo em função da fração de água transpirável no substrato. Pesqui Agropec Bras 50(9):735–744

    Article  Google Scholar 

  • King CA, Purcell LC (2017) Evaluation of methods for estimating transpiration response to soil drying for container-grown plants. Crop Sci 57:2143–2148

    Article  CAS  Google Scholar 

  • Lagergren F, Lindroth A (2002) Transpiration response to soil moisture in pine and spruce trees in Sweden. Agric for Meteorol 112(2):67–85

    Article  Google Scholar 

  • Lago I, Streck NA, Bisognin DA, Souza AT, Silva MR (2011) Transpiração e crescimento foliar de plantas de mandioca em resposta ao deficit hídrico no solo. Pesq Agropec Bras 46(11):1415–1423

    Article  Google Scholar 

  • Lago I, Streck NA, Zanon AJ, Hanauer JG, Bisognin DA, Silva MR (2012) Transpiração e crescimento foliar de clones de batata em resposta à fração de água transpirável no solo. Rev Bras Cienc Solo 36(3):745–754

    Article  Google Scholar 

  • Llopart M, Reboita MS, Rocha RP (2020) Assessment of multi-model climate projections of water resources over South America CORDEX domain. Clim Dyn 54(6):99–116

    Article  Google Scholar 

  • Marrou H, Vadez V, Sinclair TR (2015) Plant survival of drought during Establishment: an interspecific comparison of five grain legumes. Crop Sci 55(3):1264–1273. https://doi.org/10.2135/cropsci2014.11.0760

    Article  Google Scholar 

  • Martins FB, Pereira RA, Torres RR, Santos DF (2020) Climate projections of chill hours and implications for olive cultivation in Minas Gerais, Brazil. Pesqui Agropec Bras 55:e01852

    Article  Google Scholar 

  • Martins FB, Streck NA, Da Silva JC, Morais WW, Susin F, Navroski MC, Vivian MA (2008) Deficiência hídrica no solo e seu efeito sobre transpiração crescimento e desenvolvimento de mudas de duas espécies de eucalipto. Rev Bras Cienc Solo 32(3):1297–1306

    Article  Google Scholar 

  • McAdam SAM, Brodribb TJ (2014) Separating active and passive influences on stomatal control of transpiration. Plant Physiol 164:1578–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAdam SAM, Brodribb TJ (2016) Linking turgor with ABA biosynthesis: Implications for stomatal responses to vapor pressure deficit across land plants. Plant Physiol 171:2008–2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina S, Gupta SK, Vadez V (2017) Transpiration response and growth in pearl millet parental lines and hybrids bred for contrasting rainfall environments. Front Plant Sci 8:1–16

    Article  CAS  Google Scholar 

  • Medina S, Vicente R, Nieto-Taladriz MT, Aparicio N, Chairi F, Vergara-Diaz O, Araus JL (2019) The plant-transpiration response to vapor pressure deficit (VPD) in durum wheat is associated with differential yield performance and specific expression of genes involved in primary metabolism and water transport. Front Plant Sci 9:1–19

    Article  Google Scholar 

  • Ngugi MR, Doley D, Hunt MA, Ryan P, Dart P (2004) Physiological responses to water stress in Eucalyptus cloeziana and E. argophloia seedlings. Trees 18:381–389

    Article  Google Scholar 

  • Ouattara B, Diédhiou I, Belko N, Cissé N (2018) Growth and transpiration of Jatropha curcas L. seedlings under natural atmospheric vapor pressure deficit and progressive soil drying in semi-arid climate. Agric Sci 9(6):639–654

    Google Scholar 

  • Pang J, Turner NC, Khan T, Du YL, **ong JL, Colmer TD, Devilla R, Stefanova K, Siddique KHM (2017) Response of chickpea (Cicer arietinum L.) to terminal drought: Leaf stomatal conductance pod abscisic acid concentration and seed set. J Exp Bot 68(8):1973–1985

    CAS  PubMed  Google Scholar 

  • Pinheiro DG, Streck NA, Richter GL, Langner JA, Winck JEM, Uhlmann LO, Zanon AJ (2014) Limite crítico de água no solo para transpiração e crescimento foliar em mandioca em dois períodos com deficiência hídrica. Rev Bras Cienc Solo 38(6):1740–1749

    Article  Google Scholar 

  • Ray JD, Gesch RW, Sinclair TR, Hartwell AL (2002) The effect of vapor pressure deficit on maize transpiration response to a drying soil. Plant Soil 239:113–121

    Article  CAS  Google Scholar 

  • Reis FY, Martins FB, Torres RR, Florêncio GWL, Cassemiro JM, Monteiro VFC, Ferreira MC (2021) Climate change impact on the initial development of tropical forest species: a multi-model assessment. Theor Appl Climatol 145:533–547

    Article  Google Scholar 

  • Santos DF, Martins FB, Torres RR (2017) Impacts of climate projections on water balance and implications on olive crop in Minas Gerais. Rev Bras Eng Agric e Ambient 21(2):77–82

    Article  Google Scholar 

  • Schoppach R, Sadok W (2012) Differential sensitivities of transpiration to evaporative demand and soil water deficit among wheat elite cultivars indicate different strategies for drought tolerance. Environ Exp Bot 84:1–10

    Article  Google Scholar 

  • Scolforo HF, McTague JP, Burkhart H, Roise JP, Alvares CA, Stape JL (2019) Modeling whole-stand survival in clonal eucalypt stands in Brazil as a function of water availability. For Ecol Manag 432:1002–1012

    Article  Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Zhao CX (2008) Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biol 331(3):215–225

    Article  Google Scholar 

  • Sinclair TR (2012) Is transpiration efficiency a viable plant trait in breeding for crop improvement? Funct Plant Biol 39(5):339–365

    Article  Google Scholar 

  • Sinclair TR, Devi J, Shekoofa A, Choudhary S, Sadok W, Vadez V, Riar M, Rufty T (2017) Limited-transpiration response to high vapor pressure deficit in crop species. Plant Sci 260:109–118

    Article  CAS  PubMed  Google Scholar 

  • Sinclair TR, Holbrook NM, Zwieniecki MA (2005) Daily transpiration rates of woody species on drying soil. Tree Physiol 25(11):1469–1472

    Article  PubMed  Google Scholar 

  • Sinclair TR, Ludlow MM (1986) Influence of soil water supply on the plant water balance of four tropical grain legumes. Aust J Plant Physiol 13(3):329–341

    Google Scholar 

  • Souza AF, Oliveira E, Junior R (2018a) Desenvolvimento inicial e eficiência de uso de água e nitrogênio por mudas de Calophyllum brasiliense, Eucalyptus urograndis, Tabebuia impetiginosa e Toona ciliata. Cienc Florestal 28(4):1465–1477

    Article  Google Scholar 

  • Souza AT, Streck NA, Heldwein AB, Bisognin DA, Winck JEM, Rocha TSM, Zanon AJ (2014) Transpiration and leaf growth of potato clones in response to soil water deficit. Sci Agric 71(2):96–104

    Article  Google Scholar 

  • Souza PU, Lima LKS, Soares TL, Jesus ON, Coelho Filho MA, Girardi EA (2018b) Biometric physiological and anatomical responses of Passiflora spp. to controlled water deficit. Sci Hortic 229:77–90

    Article  Google Scholar 

  • Yan F, Li X, Liu F (2017) ABA signaling and stomatal control in tomato plants exposure to progressive soil drying under ambient and elevated atmospheric CO2 concentration. Environ Exp Bot 139:99–104

    Article  CAS  Google Scholar 

  • Zaman-Allah M, Jenkinson DM, Vadez V (2011) Chickpea genotypes contrasting for seed yield under terminal drought stress in the field differ for traits related to the control of water use. Funct Plant Biol 38(4):270–281

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The first author thank the Coordination for the Improvement of Higher Education Personnel (Capes, process No. 1115820/1090909) for the scholarship granted and the fourth author thank the Minas Gerais Research Founding (FAPEMIG) for financially supporting the projects APQ-01392-13 and APQ 01258-17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrina Bolzan Martins.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: This study was supported by Minas Gerais Research Founding (FAPEMIG – projects APQ-01392–13 and APQ 01,258–17).

The online version is available at http://www.springerlink.com.

Corresponding editor: Yanbo Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abreu, M.C., Soares, A.A.V., de Freitas, C.H. et al. Transpiration and growth responses by Eucalyptus species to progressive soil drying. J. For. Res. 33, 1529–1543 (2022). https://doi.org/10.1007/s11676-021-01448-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-021-01448-z

Keywords

Navigation