Log in

Diffusivities and Atomic Mobilities for the Cu-Rich fcc Cu-Al-Sn Alloys at 1073 K

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

A Correction to this article was published on 21 May 2020

This article has been updated

Abstract

Utilizing the solid–solid diffusion couples with the electron probe microanalysis technique, the composition-dependent ternary interdiffusion coefficients in fcc Al-Cu-Sn alloys at 1073 K were determined via the Whittle and Green method. Based on the experimentally determined interdiffusion coefficients at 1073 K combined with thermodynamic descriptions of fcc phase, atomic mobilities of Al, Cu, and Sn in fcc Al-Cu-Sn alloys were assessed by using CALTPP (Calculation of thermophysical properties) software. The quality of the assessed kinetic characteristics was confirmed by the comprehensive comparisons between various model-predicted diffusion behaviors and the experimental ones, including concentration profiles and diffusion paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 21 May 2020

    The authors regret that the original article was published with some errors.

References

  1. H.R. Kotadia, A. Das, E. Doernberg, and R. Schmid-Fetzer, A Comparative Study of Ternary Al-Sn-Cu Immiscible Alloys Prepared by Conventional Casting and Casting Under High-Intensity Ultrasonic Irradiation, Mater. Chem. Phys., 2011, 131, p 241-249. https://doi.org/10.1016/j.matchemphys.2011.09.020

    Article  Google Scholar 

  2. J.H. Andrew and C.A. Edwards, The Liquidus Curves of the Ternary System: Aluminium-Copper-Tin, Proc. R. Soc. Lond. A, 1909, 82, p 568-579. https://doi.org/10.1098/rspa.1909.0062

    Article  ADS  Google Scholar 

  3. A.K. Chakrabarty and K.T. Jacob, Experimental Study of Phase Equilibria in the System Cu-Al-Sn, J. Phase Equilib. Diffus., 2013, 34(4), p 267-276. https://doi.org/10.1007/s11669-013-0241-2

    Article  Google Scholar 

  4. A.K. Chakrabarty and K.T. Jacob, Isothermal Transformation of β phase in Cu-rich Cu-Al-Sn Alloys, Int. J. Mater. Res., 2012, https://doi.org/10.3139/146.110881

    Article  Google Scholar 

  5. J. Miettinen, Thermodynamic Description of the Cu-Al-Sn System in the Copper-Rich Corner, Metall. Mater. Trans. A, 2002, 33A, p 1639-1648

    Article  Google Scholar 

  6. J.S.L. Leach and G.V. Raynor, The Constitution of the Copperrich Copper-Aluminium-Tin Alloys, with Special Reference to Ternary Compound Formation, Proc. R. Soc., 1954, 224, p 251-259

    ADS  Google Scholar 

  7. A. Borgenstam, L. Hoglund, J. Agren, and A. Engstrom, Dictra, a Tool for Simulation of Diffusional Transformations In Alloys, J. Phase Equilib., 2000, 21(3), p 269-280

    Article  Google Scholar 

  8. J.O. Andersson, T. Helander, L. Hoglund, P. Shi, and B. Sundman, Thermo-Calc & DICTRA, Comput. Tools Mater. Sci. CALPHAD, 2002, 26(2), p 273-312

    Google Scholar 

  9. C. Du, Z. Zheng, Q. Min, Y. Du, Y. Liu, P. Deng, J. Zhang, S. Wen, and D. Liu, A Novel Approach to Calculate Diffusion Matrix in Ternary Systems: Application to Ag-Mg-Mn and Cu-Ni-Sn Systems, CALPHAD, 2020, 68, p 101708

    Article  Google Scholar 

  10. L. Zhang, Y. Du, Q. Chen, I. Steinbach, and B. Huang, Atomic Mobilities and Diffusivities in the fcc, L1 2 and B2 Phases of the Ni-Al System, Int. J. Mater. Res., 2010, 101, p 1461-1475

    Article  Google Scholar 

  11. D. Liu, L. Zhang, Y. Du, H. Xu, S. Liu, and L. Liu, Assessment of Atomic Mobilities of Al and Cu in fcc Al-Cu Alloys, CALPHAD, 2009, 33(4), p 761-768

    Article  Google Scholar 

  12. Xu Huixia, Lijun Zhang, Kaiming Cheng, Weimin Chen, and Du Yong, Reassessment of Atomic Mobilities in fcc Cu-Ag-Sn System Aiming at Establishment of an Atomic Mobility Database in Sn-Agcu-In-Sb-Bi-Pb Solder Alloys, J. Electron. Mater., 2017, 46, p 2119-2129

    Article  ADS  Google Scholar 

  13. J. Wang, C. Leinenbach, H.S. Liu, L.B. Liu, M. Roth, and Z.P. **, Re-Assessment of Diffusion Mobilities in the Face-Centered Cubic Cu-Sn Alloys, CALPHAD, 2009, 33, p 704-710

    Article  Google Scholar 

  14. W.B. Zhang, Y. Du, D.D. Zhao, L.J. Zhang, H.H. Xu, S.H. Liu, Y.W. Li, and S.Q. Liang, Assessment of the Atomic Mobility in fcc Al-Cu-Mg Alloys, CALPHAD, 2010, 34, p 286

    Article  Google Scholar 

  15. J.S. Kirkaldy and J.E. Lane, Diffusion in Multicomponent Metallic Systems: IX Intrinsic Diffusion Behavior and the Kirkendall Effect in Ternary Substitutional Solutuions, Can. J. Phys., 1966, 44(9), p 2059-2072

    Article  ADS  Google Scholar 

  16. A. Tarantola, Inverse problem theory and methods for model parameter estimation, SIAM, Philadelphia, 2005

    Book  Google Scholar 

  17. R. Bouchet and R. Mevrel, A Numerical Inverse Method for Calculating the Interdiffusion Coefficients Along a Diffusion Path in Ternary Systems, Acta Mater., 2002, 50(19), p 4887-4900

    Article  Google Scholar 

  18. W. Chen, L. Zhang, Y. Du, C. Tang, and B. Huang, A Pragmatic Method to Determine the Composition-Dependent Interdiffusivities in Ternary Systems by Using a Single Diffusion Couple, Scr. Mater., 2014, 90, p 53-56

    Article  ADS  Google Scholar 

  19. J.O. Andersson and J. Ågren, Models for Numerical Treatment of Multicomponent Diffusion in Simple Phases, J. Appl. Phys., 1992, 72(4), p 1350-1355

    Article  ADS  Google Scholar 

  20. W. Chen, J. Zhong, L. Zhang, An augmented numerical inverse method for determining the composition-dependent interdiffusivities in alloy systems by using a single diffusion couple, MRS Commun. 6 (3) (2016) 295–300.

  21. W. Chen, J. Zhong, and L. Zhang, An Augmented Numerical Inverse Method for Determining the Composition-Dependent Interdiffusivities in Alloy Systems by Using a Single Diffusion Couple, MRS Commun., 2016, 6(3), p 295-300

    Article  Google Scholar 

  22. O.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu, The finite element method: its basis and fundamentals, Butterworth-Heinemann Elsevier Ltd, Oxford, 2005

    MATH  Google Scholar 

  23. D.E. Goldberg, Genetic algorithms in search, optimization and machine learning, Addison-Wesley, Boston, 1989

    MATH  Google Scholar 

  24. D.P. Bertsekas, Nonlinear programming, 2nd ed., Athena scientific, Belmont, 1999

    MATH  Google Scholar 

  25. Y. Liu, C. Zhang, C. Du, Y. Du, Z. Zheng, S. Liu, L. Huang, S. Wen, Y. **, H. Zhang, F. Zhang, and G. Kaptay, CALTPP: A General Program to Calculate Thermophysical Properties, J.O. Andersson. J. Ågren, J. Appl. Phys., 1992, 72, p 1350-1355

    Article  Google Scholar 

  26. Y.M. Muggianu, M. Gambino, and J.P. Bros, Enthalpy of Formation of Liquid Bi-Sn-Ga Alloys at 723 K. Choice of an Analytical Expression of Integral and Partial Excess quantities of Mixing, J. Chim. Phys. Phys. Chim. Biol., 1975, 72, p 83-88

    Article  ADS  Google Scholar 

  27. O. Redlich and A.T. Kister, Algebraic Representation of Thermodynamic Properties and the Classification of Solutions, J. Ind. Eng. Chem., 1948, 40, p 84-88

    Article  Google Scholar 

  28. J. Chen, J. **ao, L. Zhang, and Y. Du, Interdiffusion in fcc Ni–X (X = Rh, Ta, W, Re and Ir) Alloys, J. Alloys Compd., 2016, 657, p 457-463

    Article  Google Scholar 

  29. Y. Liu, D. Liu, Y. Du, S. Liu, D. Kuang, P. Deng, J. Zhang, C. Du, Z. Zheng, X. He, JMMB, (2016)

  30. D. Kuang, D. Liu, W. Chen, Z. Lu, L. Zhang, Y. Du, Z. **, and C. Tang, Interdiffusion in bcc_B2 Ni-Al-Cu Alloys at 1 173 K, Int. J. Mater. Res., 2016, 107(7), p 597-604

    Article  Google Scholar 

  31. D. Liu, L. Zhang, Y. Du, H. Xu, and Z. **, Ternary Diffusion in Cu-rich fcc Cu–Al–Si Alloys at 1073 K, J Alloys Compd., 2013, 566, p 156-163

    Article  Google Scholar 

  32. K. Cheng, D. Liu, L. Zhang, Y. Du, S. Liu, and C. Tang, Interdiffusion and Atomic Mobility Studies in Ni-rich fcc Ni-Al-Mn Alloys, J Alloys Compd., 2013, 579, p 124-131

    Article  Google Scholar 

  33. E. Rabkin, V.N. Semenov, and A. Winkler, Percolation Effects During Interdiffusion in the Cu-NiAl System, Acta Mater., 2002, 50(12), p 3229-3239

    Article  Google Scholar 

  34. B. Messerschmidt, B.L. McIntyre, S.N. Houde-Walter, R.R. Andre, and C.H. Hsieb, Temperature Dependence of Silver-Sodium Interdiffusion in Micro-Optic Glasses, Opt. Mater., 1997, 7(4), p 165-171

    Article  ADS  Google Scholar 

  35. Q. Zhang and J.C. Zhao, Extracting Interdiffusion Coefficients from Binary Diffusion Couples Using Traditional Methods and a Forward-Simulation Method, Intermetallics, 2013, 34, p 132-141

    Article  Google Scholar 

  36. K.W. Moon, C.E. Campbell, M.E. Williams, and W.J. Boettinger, Diffusion in fcc Co-rich Co-Al-W Alloys at 900 and 1000 C, J. Phase Equilib. Diff., 2016, 37(4), p 402-415

    Article  Google Scholar 

  37. S.K. Kailasam, J.C. Lacombe, and M.E. Glicksman, Regularization Inverse Method for Variable Binary Diffusivity Measurements, Metall. Mater. Trans. A, 1999, 30(10), p 2605-2610

    Article  Google Scholar 

  38. B. TasKavakbasi, I. Golovin, A. Paul, and S. Divinski, On the Analysis of Composition Profiles in Binary Single-Phase Diffusion Couples: Systems with a Strong Compositional Dependence of the Interdiffusion Coefficient, Defect and diffusion forum, 2018, 383, p 23-30

    Article  Google Scholar 

  39. L. Onsager, Theories and Problems of Liquid Diffusion, Ann. N. Y. Acad. Sci., 1945, 46, p 241-265

    Article  ADS  Google Scholar 

  40. G. Ghosh, Dissolution and Interfacial Reactions of Thin-Film Ti/Ni/Ag Metallizations in Solder Joints, Acta Mater., 2001, 49, p 2609-2624

    Article  Google Scholar 

  41. J. Lechelle, S. Noyau, L. Aufore, A. Arredondo, and E. Audubert, Volume Interdiffusion Coefficient and Uncertainty Assessment for Polycrystalline Materials, Diffus. Fundam. Org., 2012, 17, p 1-39

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. OI172037) and the National Nature Science Foundation of China (Grant No. 414010049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milena Premovic.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Premovic, M., Du, Y., Liu, Y. et al. Diffusivities and Atomic Mobilities for the Cu-Rich fcc Cu-Al-Sn Alloys at 1073 K. J. Phase Equilib. Diffus. 41, 378–389 (2020). https://doi.org/10.1007/s11669-020-00793-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-020-00793-6

Keywords

Navigation