Log in

Heat Transfer, Thermal Stress and Failure Inspection of a Gas Turbine Compressor Stator Blade Made of Five Different Conventional Superalloys and Ultra-High-Temperature Ceramic Material: A Direct Numerical Investigation

  • Lessons Learned
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Probing the efficiency of Brayton cycle is of great importance to harbor maximum output from gas turbines. The efficiency of Brayton cycle largely depends on the maximum temperature of the cycle. However, maintaining a very high temperature in a gas turbine is restricted due to various metallurgical problems developed within the compressor blade surface, which result in the structural failure of gas turbine compressor. To address these problems, numerous prospective solutions are proposed among which materials’ selection and preference for specific parts of a gas turbine are highly celebrated among researchers. Although many works are dedicated especially to the rotor blades of the turbine compressor, the stator blades which are integral component of the turbine compressor as they partially convert high velocity into high pressure to increase the pressure from the preceding stage and have both functional criteria and failure mechanism unlike the rotor blades—are yet to receive enough attention in terms of material research and development. On the other hand, recent advancements in the refractory properties of ultra-high-temperature ceramics make them highly potent materials to incorporate in the gas turbine and manufacturing industry. The proposed article seeks to explore this scope of material research specifically for the stator blades of gas turbine compressors through a numerically performed performance analysis. To provide better insight about future reach of the scope, the performance analysis is conducted among four different superalloys which are already established as rotor blade materials—Inconel 718, Ti–6Al–4V, Nimonic 80A, GTD 111 DS and an ultra-high temperature ceramic material—NbB2 as potential stator blade material in terms of thermal distribution, thermal stress and displacement over the blade surface. Reports showed that—NbB2 undergoes the least thermal displacement, whereas Ti–6Al–4V exhibits the least thermal stress during the operational stage. Considering the overall performance—Inconel 718 and Nimonic 80A failed as potential stator blade materials, whereas NbB2 and GTD 111 DS can only withstand the extreme condition inside the compressor with safety factor of one. The article concludes with Ti–6Al–4V as the most potent stator blade material to be incorporated into the gas turbine industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

T ext :

Temperature of the external fluid

q 0 :

Heat flux (W/m2)

h :

Convective heat transfer coefficient (W/m2 K)

D :

Elasticity tensor

C :

Heat capacity (J/kg K)

\(k\) :

Thermal conductivity (W/mK)

\(S_{{{\text{ut}}}}\) :

Ultimate tensile strength

\(S_{{{\text{uc}}}}\) :

Ultimate compressive strength

E :

Young’s modulus

u :

Displacement vector

n :

Factor of safety

Ti–6Al–4V :

Grade 5 titanium (UNS R56400)

N b B 2 :

Niobium diboride

GTD 111 DS :

Directionally solidified superalloy

CTE :

Coefficient of thermal expansion

k s :

Stiffness of spring

Pr :

Prandtl number

Re :

Reynolds number

Nu :

Nusselt number

H :

Characteristic length of cooling air

x :

The distance from the beginning of the blade (in meter)

R p :

Compression ratio

\(C_{{\text{p}}}\) :

Heat capacity at constant pressure

\(C_{{\text{v}}}\) :

Heat capacity at constant volume

\(\rho\) :

Density (kg/m3)

\(\sigma\) :

Thermal stress

\(\varepsilon\) :

Thermal strain

\(\alpha\) :

Coefficient of thermal expansion

\(\sigma_{{\text{v}}}\) :

Von Mises stress

\(\sigma_{x} ,\;\sigma_{y} ,\;\sigma_{z}\) :

Normal stresses along x, y and z directions, respectively

\(\tau_{x} , \tau_{y} , \tau_{z}\) :

Shear stresses along x, y and z directions, respectively

\(\sigma_{A}\) :

Principle stress (tensile)

\(\sigma_{B }\) :

Principle stress (compressive)

\(\upsilon\) :

Poisson ratio

\(\varepsilon_{x} ,\varepsilon_{y} , \varepsilon_{z}\) :

Thermal strain along x, y and z directions, respectively

\(\tau_{ij}\) :

Shear stress tensor

\(\varepsilon_{ij}\) :

Strain tensor

\(\nabla\) :

Vector differential operator

\(\mu\) :

Dynamic viscosity (Pa s)

\(\gamma\) :

Ratio of heat capacity at constant pressure to constant volume

\(\eta\) :

Thermal efficiency

ut :

Ultimate tensile strength

uc :

Ultimate compressive strength

x, y, z :

x, y, z direction

s :

Spring

i, j :

Two-dimensional tensor

p :

Constant pressure

v :

Constant volume

References

  1. Y. Liu, Y. Zhou, W. Wu, Assessing the impact of population, income and technology on energy consumption and industrial pollutant emissions in China. Appl. Energy. 155, 904–917 (2015). https://doi.org/10.1016/j.apenergy.2015.06.051

    Article  CAS  Google Scholar 

  2. B. Mullan, J. Haqq-Misra, Population growth, energy use, and the implications for the search for extraterrestrial intelligence. Futures. 106, 4–17 (2019). https://doi.org/10.1016/j.futures.2018.06.009

    Article  Google Scholar 

  3. T. Gholizadeh, M. Vajdi, H. Rostamzadeh, Exergoeconomic optimization of a new trigeneration system driven by biogas for power, cooling, and freshwater production. Energy Convers. Manag. 205, 112417 (2020). https://doi.org/10.1016/j.enconman.2019.112417

    Article  CAS  Google Scholar 

  4. T. Gholizadeh, M. Vajdi, H. Rostamzadeh, A new trigeneration system for power, cooling, and freshwater production driven by a flash-binary geothermal heat source. Renew. Energy. 148, 31–43 (2020). https://doi.org/10.1016/j.renene.2019.11.154

    Article  Google Scholar 

  5. T.T. Chow, A review on photovoltaic/thermal hybrid solar technology. Appl. Energy. 87(2), 365–379 (2010). https://doi.org/10.1016/j.apenergy.2009.06.037

    Article  CAS  Google Scholar 

  6. D.O. Hall, Biomass energy. Energy Policy. 19(8), 711–737 (1991). https://doi.org/10.1016/0301-4215(91)90042-M

    Article  Google Scholar 

  7. M. A. Boles and Y. A. Çengel, Thermodyn. Eng. Approach. (2015)

  8. K. Vaferi et al., Heat transfer, thermal stress and failure analyses in a TiB2 gas turbine stator blade. Ceram. Int. 45(15), 19331–19339 (2019). https://doi.org/10.1016/j.ceramint.2019.06.184

    Article  CAS  Google Scholar 

  9. D.B. Kang, S.W. Lee, Effects of squealer rim height on heat/mass transfer on the floor of cavity squealer tip in a high turning turbine blade cascade. Int. J. Heat Mass Transf. 99, 283–292 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.121

    Article  Google Scholar 

  10. M.W. Benner, S.A. Sjolander, S.H. Moustapha, An empirical prediction method for secondary losses in turbines: part II—a new secondary loss correlation. J. Turbomach. 128(2), 281–291 (2006). https://doi.org/10.1115/1.2162594

    Article  Google Scholar 

  11. S.W. Lee, J.S. Joo, Heat/mass transfer over the cavity squealer tip equipped with a full coverage winglet in a turbine cascade: part 2—data on the cavity floor. Int. J. Heat Mass Transf. 108, 1264–1272 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.026

    Article  CAS  Google Scholar 

  12. J. Hou, B.J. Wicks, R.A. Antoniou, An investigation of fatigue failures of turbine blades in a gas turbine engine by mechanical analysis. Eng. Fail. Anal. 9(2), 201–211 (2002). https://doi.org/10.1016/S1350-6307(01)00005-X

    Article  Google Scholar 

  13. J.S. Park, W. Choi, Heat and mass transfer characteristics on the first-stage gas turbine blade under unsteady wake flow. Int. J. Therm. Sci. 138, 314–321 (2019). https://doi.org/10.1016/j.ijthermalsci.2019.01.008

    Article  Google Scholar 

  14. S. Qu, C.M. Fu, C. Dong, J.F. Tian, Z.F. Zhang, Failure analysis of the 1st stage blades in gas turbine engine. Eng. Fail. Anal. 32, 292–303 (2013). https://doi.org/10.1016/j.engfailanal.2013.03.017

    Article  CAS  Google Scholar 

  15. M. Rezazadeh Reyhani, M. Alizadeh, A. Fathi, H. Khaledi, Turbine blade temperature calculation and life estimation: a sensitivity analysis. Propuls. Power Res. 2(2), 148–161 (2013). https://doi.org/10.1016/j.jppr.2013.04.004

    Article  Google Scholar 

  16. S. Zecchi, L. Arcangeli, B. Facchini, D. Coutandin, 2004, Features of a cooling system simulation tool used in industrial preliminary design stage”. Proc. ASME Turbo Expo. 3, 493–501 (2004). https://doi.org/10.1115/gt2004-53547

    Article  Google Scholar 

  17. D. Coutandin, S. Taddei, B. Facchini, Advanced doublewall cooling system development for turbine vanes. Proc. ASME Turbo Expo. 3, 623–632 (2006). https://doi.org/10.1115/GT2006-90784

    Article  Google Scholar 

  18. A. Sato, Y.L. Chiu, R.C. Reed, Oxidation of nickel-based single-crystal superalloys for industrial gas turbine applications. Acta Mater. 59(1), 225–240 (2011). https://doi.org/10.1016/j.actamat.2010.09.027

    Article  CAS  Google Scholar 

  19. R.E. Schafrik, R. Sprague, Gas turbine materials. Adv. Mater. Process. 162(6), 41–46 (2004). https://doi.org/10.1016/0016-0032(58)90740-3

    Article  CAS  Google Scholar 

  20. G.M.M.B. Henderson, D. Arrell, M. Heobel, R. Larsson, Nickel-based superalloy welding practices for industrial gas turbine applications. Sci. Technol. Weld. Join. 9(1), 1–14 (2004)

    Article  Google Scholar 

  21. Y.H. Wen, B. Wang, J.P. Simmons, Y. Wang, A phase-field model for heat treatment applications in Ni-based alloys. Acta Mater. 54(8), 2087–2099 (2006). https://doi.org/10.1016/j.actamat.2006.01.001

    Article  CAS  Google Scholar 

  22. M. Kliuev et al., EDM drilling and sha** of cooling holes in inconel 718 turbine blades. Procedia CIRP. 42, 322–327 (2016). https://doi.org/10.1016/j.procir.2016.02.293

    Article  Google Scholar 

  23. S. Roy, R. Kumar, A.. P. Anurag, R.K. Das, A brief review on machining of inconel 718. Mater. Today Proc. 5(9), 18664–18673 (2018). https://doi.org/10.1016/j.matpr.2018.06.212

    Article  CAS  Google Scholar 

  24. A. Thomas, M. El-Wahabi, J.M. Cabrera, J.M. Prado, High temperature deformation of Inconel 718. J. Mater. Process. Technol. 177(1–3), 469–472 (2006). https://doi.org/10.1016/j.jmatprotec.2006.04.072

    Article  CAS  Google Scholar 

  25. E. Hosseini, V.A. Popovich, A review of mechanical properties of additively manufactured Inconel 718. Addit. Manuf. 30, 100877 (2019). https://doi.org/10.1016/j.addma.2019.100877

    Article  CAS  Google Scholar 

  26. X. Wang, X. Gong, K. Chou, Review on powder-bed laser additive manufacturing of Inconel 718 parts. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 231(11), 1890–1903 (2017). https://doi.org/10.1177/0954405415619883

    Article  CAS  Google Scholar 

  27. W. Maktouf, K. Saï, An investigation of premature fatigue failures of gas turbine blade. Eng. Fail. Anal. 47, 89–101 (2015). https://doi.org/10.1016/j.engfailanal.2014.09.015

    Article  CAS  Google Scholar 

  28. M. Peters, J. Kumpfert, C.H. Ward, C. Leyens, Titanium alloys for aerospace applications. Adv. Eng. Mater. 5(6), 419–427 (2003). https://doi.org/10.1002/adem.200310095

    Article  CAS  Google Scholar 

  29. J.C. Williams, R.R. Boyer, Opportunities and issues in the application of titanium alloys for aerospace components. Metals (Basel). (2020). https://doi.org/10.3390/met10060705

    Article  Google Scholar 

  30. A. Kermanpur, H. Sepehri Amin, S. Ziaei-Rad, N. Nourbakhshnia, M. Mosaddeghfar, Failure analysis of Ti6Al4V gas turbine compressor blades. Eng. Fail. Anal. 15(8), 1052–1064 (2008). https://doi.org/10.1016/j.engfailanal.2007.11.018

    Article  CAS  Google Scholar 

  31. S. Luo, D. Zhu, L. Hua, D. Qian, S. Yan, F. Yu, Effects of process parameters on deformation and temperature uniformity of forged Ti–6Al–4V turbine blade. J. Mater. Eng. Perform. 25(11), 4824–4836 (2016). https://doi.org/10.1007/s11665-016-2320-0

    Article  CAS  Google Scholar 

  32. J.R. Scheibel, R. Aluru, H. van Esch, “Mechanical properties in GTD-111 alloy in heavy frame gas turbines. Am. Soc. Mech. Eng. (2018). https://doi.org/10.1115/GT2018-75432

    Article  Google Scholar 

  33. K. Sabri, M. Gaceb, M.O. Si-Chaib, Analysis of a directionally solidified (DS) GTD-111 turbine blade failure. J. Fail. Anal. Prev. 20(4), 1162–1174 (2020). https://doi.org/10.1007/s11668-020-00920-y

    Article  Google Scholar 

  34. A.A. Pauzi, N. Berahim, S. Husin, Degradation of gas turbine blades for a thermal power plant. MATEC Web Conf. 54, 6–9 (2016). https://doi.org/10.1051/matecconf/20165403002

    Article  Google Scholar 

  35. W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, J.A. Zaykoski, Refractory diborides of zirconium and hafnium. J. Am. Ceram. Soc. 90(5), 1347–1364 (2007). https://doi.org/10.1111/j.1551-2916.2007.01583.x

    Article  CAS  Google Scholar 

  36. S. Zhu, W.G. Fahrenholtz, G.E. Hilmas, Influence of silicon carbide particle size on the microstructure and mechanical properties of zirconium diboride-silicon carbide ceramics. J. Eur. Ceram. Soc. 27(4), 2077–2083 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.07.003

    Article  CAS  Google Scholar 

  37. M.S. Asl, M.G. Kakroudi, B. Nayebi, H. Nasiri, Taguchi analysis on the effect of hot pressing parameters on density and hardness of zirconium diboride. Int. J. Refract. Met. Hard Mater. 50, 313–320 (2015). https://doi.org/10.1016/j.ijrmhm.2014.09.006

    Article  CAS  Google Scholar 

  38. R. Königshofer et al., Solid-state properties of hot-pressed TiB2 ceramics. Int. J. Refract. Met. Hard Mater. 23(4–6), 350–357 (2005). https://doi.org/10.1016/j.ijrmhm.2005.05.006

    Article  CAS  Google Scholar 

  39. M. Vajdi, F.S. Moghanlou, Z. Ahmadi, A. Motallebzadeh, M. Shahedi Asl, Thermal diffusivity and microstructure of spark plasma sintered TiB2 [sbnd] SiC [sbnd] Ti composite. Ceram. Int. 45(7), 8333–8344 (2019). https://doi.org/10.1016/j.ceramint.2019.01.141

    Article  CAS  Google Scholar 

  40. S. Nekahi, K. Vaferi, M. Vajdi, F.S. Moghanlou, M.S. Asl, M. Shokouhimehr, A numerical approach to the heat transfer and thermal stress in a gas turbine stator blade made of HfB2. Ceram. Int. 45(18), 24060–24069 (2019). https://doi.org/10.1016/j.ceramint.2019.08.112

    Article  CAS  Google Scholar 

  41. F.S. Moghanlou, M. Vajdi, A. Motallebzadeh, J. Sha, M. Shokouhimehr, M.S. Asl, Numerical analyses of heat transfer and thermal stress in a ZrB2 gas turbine stator blade. Ceram. Int. 45(14), 17742–17750 (2019). https://doi.org/10.1016/j.ceramint.2019.05.344

    Article  CAS  Google Scholar 

  42. M.S. Asl, B. Nayebi, M. Shokouhimehr, TEM characterization of spark plasma sintered ZrB2–SiC–graphene nanocomposite. Ceram. Int. 44(13), 15269–15273 (2018). https://doi.org/10.1016/j.ceramint.2018.05.170

    Article  CAS  Google Scholar 

  43. M.S. Asl, B. Nayebi, A. Motallebzadeh, M. Shokouhimehr, Nanoindentation and nanostructural characterization of ZrB2–SiC composite doped with graphite nano-flakes. Compos. Part B Eng. 175, 107–153 (2019). https://doi.org/10.1016/j.compositesb.2019.107153

    Article  CAS  Google Scholar 

  44. M. Mallik, A.J. Kailath, K.K. Ray, R. Mitra, Electrical and thermophysical properties of ZrB2 and HfB2 based composites. J. Eur. Ceram. Soc. 32(10), 2545–2555 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.02.013

    Article  CAS  Google Scholar 

  45. K. Vaferi et al., Thermo-mechanical simulation of ultrahigh temperature ceramic composites as alternative materials for gas turbine stator blades. Ceram. Int. 47(1), 567–580 (2021). https://doi.org/10.1016/j.ceramint.2020.08.164

    Article  CAS  Google Scholar 

  46. M. Usta, The characterization of borided pure niobium. Surf. Coat. Technol. 194(2–3), 251–255 (2005). https://doi.org/10.1016/j.surfcoat.2004.06.040

    Article  CAS  Google Scholar 

  47. M. Usta, I. Ozbek, C. Bindal, A.H. Ucisik, S. Ingole, H. Liang, A comparative study of borided pure niobium, tungsten and chromium. Vacuum. 80(11–12), 1321–1325 (2006). https://doi.org/10.1016/j.vacuum.2006.01.036

    Article  CAS  Google Scholar 

  48. Ö. Balcı, D. Ağaoğulları, F. Muhaffel, M.L. Öveçoğlu, H. Çimenoğlu, İ Duman, Effect of sintering techniques on the microstructure and mechanical properties of niobium borides. J. Eur. Ceram. Soc. 36(13), 3113–3123 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.05.014

    Article  CAS  Google Scholar 

  49. Y. Xu et al., Strengthening mechanisms of carbon in modified nickel-based superalloy Nimonic 80A. Mater. Sci. Eng. A. 528(13–14), 4600–4607 (2011). https://doi.org/10.1016/j.msea.2011.02.072

    Article  CAS  Google Scholar 

  50. M. Bahgat, M.K. Paek, C.H. Park, J.J. Pak, Thermal synthesis of nanocrystalline (CoxNi1-x) yFe1-y KOVAR alloy through gaseous reduction of mixed oxides. Mater. Trans. 49(1), 208–214 (2008). https://doi.org/10.2320/matertrans.MER2007229

    Article  CAS  Google Scholar 

  51. A. Günen, K.M. Döleker, M.E. Korkmaz, M.S. Gök, A. Erdogan, Characteristics, high temperature wear and oxidation behavior of boride layer grown on nimonic 80A Ni-based superalloy. Surf. Coat. Technol. 409, 126906 (2021). https://doi.org/10.1016/J.SURFCOAT.2021.126906

    Article  Google Scholar 

  52. M.E. Korkmaz, N. Yaşar, M. Günay, Numerical and experimental investigation of cutting forces in turning of Nimonic 80A superalloy. Eng. Sci. Technol. Int. J. 23(3), 664–673 (2020). https://doi.org/10.1016/j.jestch.2020.02.001

    Article  Google Scholar 

  53. D.K. Kim, D.Y. Kim, S.H. Ryu, D.J. Kim, Application of nimonic 80A to the hot forging of an exhaust valve head. J. Mater. Process. Technol. 113(1–3), 148–152 (2001). https://doi.org/10.1016/S0924-0136(01)00700-2

    Article  CAS  Google Scholar 

  54. R.R. Kumar, K.M. Pandey, Static structural and modal analysis of gas turbine blade. IOP Conf. Ser. Mater. Sci. Eng. 225(1), 0–9 (2017). https://doi.org/10.1088/1757-899X/225/1/012102

    Article  Google Scholar 

  55. H. Khawaja, M. Moatamedi, Selection of high performance alloy for gas turbine blade using multiphysics analysis. Int. J. Multiphys. 8(1), 91–100 (2014). https://doi.org/10.1260/1750-9548.8.1.91

    Article  Google Scholar 

  56. R. Subbarao, N. Mahato, Computational analysis on the use of various nimonic alloys as gas turbine blade materials. Gas Turbine India Conf. (2019). https://doi.org/10.1115/GTINDIA2019-2398

    Article  Google Scholar 

  57. P. Taylor, Machining science and technology: an international machinability of nickel-based high temperature alloys. Mach. Sci. Technol. Int. J. 4(1), 37–41 (2014)

    Google Scholar 

  58. C. Carcasci, B. Facchini, A numerical procedure to design internal cooling of gas turbine stator blades. Rev. Gen. Therm. 35(412), 257–268 (1996). https://doi.org/10.1016/S0035-3159(96)80018-3

    Article  CAS  Google Scholar 

  59. G. Turbine and S. C. Solid, 2020. Nickel-based superalloys machinability of nickel-based superal- loys: an overview microstructure control in processing nickel, titanium and other special alloys superalloys for gas turbine engines nickel-based superalloys. Mechanical Properties of Mul-T

  60. W.G. Fahrenholtz, G.E. Hilmas, Ultra-high temperature ceramics: Materials for extreme environments. Scr. Mater. 129, 94–99 (2017). https://doi.org/10.1016/j.scriptamat.2016.10.018

    Article  CAS  Google Scholar 

  61. J.N. Sweet, E.P. Roth, M. Moss, Thermal conductivity of Inconel 718 and 304 stainless steel. Int. J. Thermophys. 8(5), 593–606 (1987). https://doi.org/10.1007/BF00503645

    Article  CAS  Google Scholar 

  62. I. Akin, B.Ç. Ocak, F. Sahin, G. Goller, Effects of SiC and SiC–GNP additions on the mechanical properties and oxidation behavior of NbB 2. J. Asian Ceram. Soc. 7, 1–13 (2019). https://doi.org/10.1080/21870764.2019.1595929

    Article  Google Scholar 

  63. C. Street, U.S.A. Mass, T. Losekamp, Review paper: tabulation of the coefficients of a quadratic function for the thermal expansion of various alloys and other engineering materials. Mater Sci. Eng. 10, 193–203 (1972)

    Google Scholar 

  64. L. Metals, Letter A study of the thermal of NbB2 and TaBz*. 139, 7–10, (1988)

  65. G.A. Knorovsky, M.J. Cieslak, T.J. Headley, A.D. Romig, W.F. Hammetter, INCONEL 718: a solidification diagram. Metall. Trans. A. 20(10), 2149–2158 (1989). https://doi.org/10.1007/BF02650300

    Article  Google Scholar 

  66. M.K. Lee, J.G. Lee, Mechanical and corrosion properties of Ti–6Al–4V alloy joints brazed with a low-melting-point 62.7Zr–11.0Ti–13.2Cu–9.8Ni–3.3Be amorphous filler metal. Mater. Charact. 81, 19–27 (2013). https://doi.org/10.1016/j.matchar.2013.04.002

    Article  CAS  Google Scholar 

  67. Nimonic 80A http://www.superalloy.com.cn/EN/Alloy/Nimonic80A/. Accessed 26 Jul 2021

  68. K. Sairam, J.K. Sonber, T.S.R.C. Murthy, C. Subramanian, R.K. Fotedar, R.C. Hubli, Reaction spark plasma sintering of niobium diboride. Int. J. Refract. Met. Hard Mater. 43, 259–262 (2014). https://doi.org/10.1016/j.ijrmhm.2013.12.011

    Article  CAS  Google Scholar 

  69. J. Brenneman, J. Wei, Z. Sun, L. Liu, G. Zou, Y. Zhou, Oxidation behavior of GTD111 Ni-based superalloy at 900 °C in air. Corros. Sci. 100, 267–274 (2015). https://doi.org/10.1016/j.corsci.2015.07.031

    Article  CAS  Google Scholar 

  70. B.S. Babu, V. Srikanth, Y. Balram, T. Vishnuvardhan, M.A.A. Baig, Numerical analysis on the indentation behavior of Ti–6Al–4V alloy. Mater. Today Proc. 19, 827–830 (2019). https://doi.org/10.1016/j.matpr.2019.08.139

    Article  CAS  Google Scholar 

  71. L. Umamaheswararao, K. Mallikarjunarao, Design and Analysis of turbine blade by using fem. Int. J. Mech. Eng. 4(1), 1–8 (2015)

    Google Scholar 

  72. A. Shaw, Physical properties of various conductive diborides and their binaries. Grad. Theses Diss. (2015). Available: http://lib.dr.iastate.edu/etd/14496

  73. D. Demirskyi, I. Solodkyi, T. Nishimura, O.O. Vasylkiv, Fracture and property relationships in the double diboride ceramic composites by spark plasma sintering of TiB2 and NbB2. J. Am. Ceram. Soc. 102(7), 4259–4271 (2019). https://doi.org/10.1111/jace.16276

    Article  CAS  Google Scholar 

  74. D. Siebörger, H. Knake, U. Glatzel, Temperature dependence of the elastic moduli of the nickel-base superalloy CMSX-4 and its isolated phases. Mater. Sci. Eng. A. 298(1–2), 26–33 (2001). https://doi.org/10.1016/s0921-5093(00)01318-6

    Article  Google Scholar 

  75. M. Papa, R.J. Goldstein, F. Gori, Effects of tip geometry and tip clearance on the mass/heat transfer from a large-scale gas turbine blade. J. Turbomach. 125(1), 90–96 (2003). https://doi.org/10.1115/1.1529190

    Article  Google Scholar 

  76. M. Beghini et al., High temperature fatigue testing of gas turbine blades. Procedia Struct. Integr. 7, 206–213 (2017). https://doi.org/10.1016/j.prostr.2017.11.079

    Article  Google Scholar 

  77. D. Demirskyi, I. Solodkyi, T. Nishimura, Y. Sakka, O. Vasylkiv, High-temperature strength and plastic deformation behavior of niobium diboride consolidated by spark plasma sintering. J. Am. Ceram. Soc. 100(11), 5295–5305 (2017). https://doi.org/10.1111/jace.15048

    Article  CAS  Google Scholar 

  78. B. Wilthan, K. Preis, R. Tanzer, W. Schützenhöfer, G. Pottlacher, Thermophysical properties of the Ni-based alloy nimonic 80A up to 2400 K, II. J. Alloy. Compd. 452(1), 102–104 (2008). https://doi.org/10.1016/j.jallcom.2006.11.214

    Article  CAS  Google Scholar 

  79. F.G. Keihn, E.J. Keplin, High-Temperature thermal expansion of certain group IV and group V diborides. J. Am. Ceram. Soc. 50(2), 81–84 (1967). https://doi.org/10.1111/j.1151-2916.1967.tb15044.x

    Article  CAS  Google Scholar 

  80. G.L. Zhunkovskii, T.M. Evtushok, O.N. Grigor’Ev, V.A. Kotenko, P.V. Mazur, Activated sintering of refractory borides. Powder Metall. Met. Ceram. 50(3–4), 212–216 (2011). https://doi.org/10.1007/s11106-011-9320-2

    Article  CAS  Google Scholar 

  81. K.K. Sharma, D. Banerjee, S.N. Tewari, Effect of reverse-aging treatment on the microstructure and mechanical properties of Nimonic alloys. Mater. Sci. Eng. 104, 131–140 (1988). https://doi.org/10.1016/0025-5416(88)90414-4

    Article  Google Scholar 

  82. J.H. Du, X.D. Lu, Q. Deng, J.L. Qu, J.Y. Zhuang, Z.Y. Zhong, High-temperature structure stability and mechanical properties of novel 718 superalloy. Mater. Sci. Eng. A. 452–453, 584–591 (2007). https://doi.org/10.1016/j.msea.2006.11.039

    Article  CAS  Google Scholar 

  83. A. Singh, A.K. Pujari, B.V.S.S.S. Prasad, Conjugate heat transfer analysis of a rotor blade with coolant channels. Heat Transf. (2021). https://doi.org/10.1002/htj.22205

    Article  Google Scholar 

Download references

Acknowledgments

To acknowledge the contribution of Monazat E Jannat and Reaz Chaklader to the overall successful completion of the project, the author would like to express their gratitude. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

AA did conceptualization, validation, formal analysis, visualization, writing—original draft, writing—review and editing, software. MTS was involved in supervision, data curation, review, and editing.

Corresponding author

Correspondence to Abyaz Abid.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abid, A., Sarowar, M.T. Heat Transfer, Thermal Stress and Failure Inspection of a Gas Turbine Compressor Stator Blade Made of Five Different Conventional Superalloys and Ultra-High-Temperature Ceramic Material: A Direct Numerical Investigation. J Fail. Anal. and Preven. 22, 878–898 (2022). https://doi.org/10.1007/s11668-022-01413-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-022-01413-w

Keywords

Navigation