Log in

Effect of Low Plasma Spraying Power on Anode Microstructure and Performance for Metal-Supported Solid Oxide Fuel Cells

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Metal-supported solid oxide fuel cells have broad application prospects in distributed power generation, transportation, military, and other fields. The electrochemical performance of the cell is still a challenge in commercial applications. Regulating the anode microstructure and optimizing polarization characteristics are effective methods. In this study, atmospheric plasma spraying technology is chosen to prepare the Ni-Gd0.2Ce0.8O1.9(GDC) anodes using different low plasma powers (18, 21, 24 kW), which is cost-effective and efficient. The power effect on anode microstructure and electrochemical performance is investigated. The results show that as the plasma power decreases from 24 to 18 kW, the anode’s gas permeability and three-phase reaction boundary (TPB) gradually increase. Reducing the spraying power can decrease polarization resistance and improve power density. The 18-kW anode exhibits the lowest polarization resistance and the best output performance. Open-circuit voltage and maximum power density are 1.03 V and 0.89 W cm−2 at 750 °C, respectively. The polarization resistance and total resistance are 0.19 and 0.40 Ω cm2, respectively. The experimental results prove that atmospheric plasma spraying can realize the rapid and low-cost anode preparation for high-performance MS-SOFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Chasta, Himanshu, and M.S. Dhaka, A Review on Materials, Advantages, and Challenges in Thin Film Based Solid Oxide Fuel Cells, Int. J. Energy Res., 2022, 46, p 14628-14658. https://doi.org/10.1002/er.8238

    Article  CAS  Google Scholar 

  2. M. Fallah Vostakola and B. Amini Horri, Progress in Material Development for Low-Temperature Solid Oxide Fuel Cells: A Review, Energies, 2021, 14, p 1280. https://doi.org/10.3390/en14051280

    Article  CAS  Google Scholar 

  3. S. Opakhai and K. Kuterbekov, Metal-Supported Solid Oxide Fuel Cells: A Review of Recent Developments and Problems, Energies, 2023, 16(12), p 4700. https://doi.org/10.3390/en16124700

    Article  CAS  Google Scholar 

  4. M. Singh, D. Zappa, and E. Comini, Solid Oxide Fuel Cell: Decade of Progress, Future Perspectives and Challenges, Int. J. Hydrog. Energy, 2021, 46, p 27643-27674. https://doi.org/10.1016/j.ijhydene.2021.06.020

    Article  CAS  Google Scholar 

  5. K.A. Kuterbekov, A.V. Nikonov, K.Z. Bekmyrza, N.B. Pavzderin, A.M. Kabyshev, M.M. Kubenova, G.D. Kabdrakhimova, and N. Aidarbekov, Classification of Solid Oxide Fuel Cells, Nanomaterials, 2022, 12, p 1059. https://doi.org/10.3390/nano12071059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. N. Mahato, A. Banerjee, A. Gupta, S. Omar, and K. Balani, Progress in Material Selection for Solid Oxide Fuel Cell Technology: A Review, Prog. Mater. Sci., 2015, 72, p 141-337. https://doi.org/10.1016/j.pmatsci.2015.01.001

    Article  CAS  Google Scholar 

  7. A. Leonide, V. Sonn, A. Weber, and E. Ivers-Tiffée, Evaluation and Modeling of the Cell Resistance in Anode-Supported Solid Oxide Fuel Cells, J. Electrochem. Soc., 2008, 155, p B36. https://doi.org/10.1149/1.2801372

    Article  CAS  Google Scholar 

  8. Y. Zhang and J.D. Nicholas, Updating the Notion that Poor Cathode Performance Typically Dominates Overall Solid Oxide Fuel Cell Response, J. Electrochem. Soc., 2021, 168, p 034513. https://doi.org/10.1149/1945-7111/abed21

    Article  CAS  Google Scholar 

  9. Y.-C. Yang, P.-H. Wang, Y.-T. Tsai, and H.-C. Ong, Influences of feedstock and plasma spraying parameters on the fabrication of tubular solid oxide fuel cell anodes, Ceram. Int., 2018, 44, p 7824-7830. https://doi.org/10.1016/j.ceramint.2018.01.216

    Article  CAS  Google Scholar 

  10. C. Hwang, C.-H. Tsai, C.-H. Lo, and C.-H. Sun, Plasma sprayed metal supported YSZ/Ni–LSGM–LSCF ITSOFC with nanostructured anode, J. Power. Sources, 2008, 180, p 132-142. https://doi.org/10.1016/j.jpowsour.2008.01.075

    Article  CAS  Google Scholar 

  11. C.X. Li, C.J. Li, and G.J. Yang, Development of a Ni/Al2O3 Cermet-Supported Tubular Solid Oxide Fuel Cell Assembled with Different Functional Layers by Atmospheric Plasma-Spraying, J. Therm. Spray Technol., 2009, 18, p 83-89. https://doi.org/10.1007/s11666-008-9287-9

    Article  CAS  Google Scholar 

  12. C.J. Li, C.X. Li, Y.Z. **ng, M. Gao, and G.J. Yang, Influence of YSZ Electrolyte Thickness on the Characteristics of Plasma-Sprayed Cermet Supported Tubular SOFC, Solid State Ion., 2006, 177, p 2065-2069. https://doi.org/10.1016/j.ssi.2006.03.004

    Article  CAS  Google Scholar 

  13. C. Metcalfe and O. Kesler, Influence of Microstructure on Electrochemical Performance of Plasma Sprayed Ni-YSZ Anodes for SOFCs, Fuel Cells, 2020, 20, p 730-740. https://doi.org/10.1002/fuce.201900233

    Article  CAS  Google Scholar 

  14. V.A. Rojek-Wöckner, A.K. Opitz, M. Brandner, J. Mathé, and M. Bram, A Novel Ni/Ceria-Based Anode for Metal-Supported Solid Oxide Fuel Cells, J. Power. Sources, 2016, 328, p 65-74. https://doi.org/10.1016/j.jpowsour.2016.07.075

    Article  CAS  Google Scholar 

  15. D. Udomsilp, J. Rechberger, R. Neubauer, C. Bischof, F. Thaler, W. Schafbauer, N.H. Menzler, L.G.J. de Haart, A. Nenning, A.K. Opitz, O. Guillon, and M. Bram, Metal-Supported Solid Oxide Fuel Cells with Exceptionally High Power Density for Range Extender Systems, Cell Rep. Phys. Sci., 2020, 1, p 100072. https://doi.org/10.1016/j.xcrp.2020.100072

    Article  Google Scholar 

  16. M. Mogensen, N.M. Sammes, and A. Geoff, Tompsett, Physical, Chemical and Electrochemical Properties of Pure and Doped Ceria, Solid State Ion., 2000, 129, p 63-94. https://doi.org/10.1016/S0167-2738(99)00318-5

    Article  CAS  Google Scholar 

  17. W.C. Chueh, Y. Hao, W. Jung, and S.M. Haile, High Electrochemical Activity of the Oxide Phase in Model Ceria–Pt and Ceria–Ni Composite Anodes, Nat. Mater., 2012, 11, p 155-161. https://doi.org/10.1038/nmat3184

    Article  CAS  Google Scholar 

  18. C.S. Hwang, C.H. Tsai, T.J. Hwang, C.L. Chang, S.F. Yang, and J.K. Lin, Novel Metal Substrates for High Power Metal-supported Solid Oxide Fuel Cells, Fuel Cells, 2016, 16, p 244-251. https://doi.org/10.1002/fuce.201500216

    Article  CAS  Google Scholar 

  19. A.S. Ivashutenko, I.V. Ionov, A.S. Maznoy, A.A. Sivkov, and A.A. Solovyev, Comparative Evaluation of Spark Plasma and Conventional Sintering of NiO/YSZ Layers for Metal-Supported Solid Oxide Fuel Cells, High Temp. Mater. Process. (London), 2018, 37, p 351-356. https://doi.org/10.1515/htmp-2016-0193

    Article  CAS  Google Scholar 

  20. J.-T. Gao, J.-H. Li, Y.-P. Wang, C.-J. Li, and C.-X. Li, Self-Sealing Metal-Supported SOFC Fabricated by Plasma Spraying and Its Performance under Unbalanced Gas Pressure, J. Therm. Spray Technol., 2020, 29, p 2001-2011. https://doi.org/10.1007/s11666-020-01096-5

    Article  CAS  Google Scholar 

  21. K.J. Kim, S.J. Kim, and G.M. Choi, Y0.08Sr0.88TiO3-CeO2 Composite as a Diffusion Barrier Layer for Stainless-Steel Supported Solid Oxide Fuel Cell, J. Power. Sources, 2016, 307, p 385-390. https://doi.org/10.1016/j.jpowsour.2015.12.130

    Article  CAS  Google Scholar 

  22. Y.-C. Yang, L.-Y. Lu, C.-S. Hwang, and C.-H. Tsai, Residual Stresses in the Atmospheric Plasma Sprayed NiO/LDC Anode of the Metallic Supported Solid Oxide Fuel Cells, Surf. Coat. Technol., 2013, 231, p 193-200. https://doi.org/10.1016/j.surfcoat.2012.06.038

    Article  CAS  Google Scholar 

  23. Y.-C. Yang, T.-H. Chang, Y.-C. Wu, and S.-F. Wang, Porous Ni/8YSZ Anode of SOFC Fabricated by the Plasma Sprayed Method, Int. J. Hydrog. Energy, 2012, 37, p 13746-13754. https://doi.org/10.1016/j.ijhydene.2012.03.080

    Article  CAS  Google Scholar 

  24. M. Gupta, A. Weber, N. Markocsan, and N. Heiden, Development of Plasma Sprayed Ni/YSZ Anodes for Metal Supported Solid Oxide Fuel Cells, Surf. Coat. Technol., 2017, 318, p 178-189. https://doi.org/10.1016/j.surfcoat.2016.09.014

    Article  CAS  Google Scholar 

  25. T. Fu, J.-T. Gao, Y. Gao, C.-X. Li, C.-J. Li, Z. Li, and T. Liu, Effect of Anode Microstructure on the Performance for Metal-Supported SOFC by Plasma Spraying, Therm. Spray. Technol., 2022, 14, p 28-37.

    Google Scholar 

  26. C. Song, S.M. **e, X.J. Fan, P.J. He, M. Liu, K.S. Zhou, C.M. Deng, and H.L. Liao, Very Low-Pressure Plasma-Sprayed Dense Yttria-Stabilized Zirconia Coatings Using an Axial Bi-Cathode Plasma Torch, Surf. Coat. Technol., 2020, 402, p 126281. https://doi.org/10.1016/j.surfcoat.2020.126281

    Article  CAS  Google Scholar 

  27. K. Du, C. Song, M. Liu, T.K. Liu, K. Wen, H.L. Liao, and C.H. Yang, Preparation of Yttria-Stabilized Zirconia Electrolyte via Atmospheric Plasma Spraying for Metal-Supported Solid Oxide Fuel Cells, Int. J. Hydrog. Energy, 2024, 50, p 1133-1141. https://doi.org/10.1016/j.ijhydene.2023.04.080

    Article  CAS  Google Scholar 

  28. Y. Guo, C. Song, D. Chen, K.S. Lin, K. Du, Z.Z. Zhu, T.K. Liu, K. Wen, M. Liu, and H.L. Liao, Low-Pressure Plasma Sprayed Dense Scandia-Stabilized Zirconia Electrolyte and Its Effect on SOFC Performance, J. Alloy. Compd., 2024, 977, p 173276. https://doi.org/10.1016/j.jallcom.2023.173276

    Article  CAS  Google Scholar 

  29. A. Rednyk, R. Musalek, T. Tesar, J. Medricky, A. Tsepeleva, and F. Lukac, Liquid Plasma Spraying of NiO-YSZ Anode Layers Applicable for SOFC, Mater. Today Commun., 2024, 38, p 107855. https://doi.org/10.1016/j.mtcomm.2023.107855

    Article  CAS  Google Scholar 

  30. Y.J. Kim, W.N. Jung, J.H. Yu, H.J. Kim, K.S. Yun, D.G. Kang, and M.C. Lee, Design and Analysis of SOFC Stack with Different Types of External Manifolds, Int. J. Hydrog. Energy, 2020, 45, p 29143-29154. https://doi.org/10.1016/j.ijhydene.2020.07.145

    Article  CAS  Google Scholar 

  31. D.E. Vladikova, Z.B. Stoynov, A. Barbucci, M. Viviani, P. Carpanese, J.A. Kilner, S.J. Skinner, and R. Rudkin, Impedance Studies of Cathode/Electrolyte Behaviour in SOFC, Electrochim. Acta, 2008, 53, p 7491-7499. https://doi.org/10.1016/j.electacta.2007.11.037

    Article  CAS  Google Scholar 

  32. B.A. Boukamp and A. Rolle, Use of a Distribution Function of Relaxation Times (DFRT) in Impedance Analysis of SOFC Electrodes, Solid State Ion., 2018, 314, p 103-111. https://doi.org/10.1016/j.ssi.2017.11.021

    Article  CAS  Google Scholar 

  33. C. Wang, Z. Lü, C. Su, J. Li, Z. Cao, X. Zhu, Y. Wu, and H. Li, Effects of Discharge Mode And Fuel Treating Temperature on the Fuel Utilization of Direct Carbon Solid Oxide Fuel Cell, Int. J. Hydrog. Energy, 2019, 44, p 1174-1181. https://doi.org/10.1016/j.ijhydene.2018.11.073

    Article  CAS  Google Scholar 

  34. J. Lin, H. Li, W. Wang, P. Qiu, G. Tao, K. Huang, and F. Chen, Atmospheric Plasma Spraying to Fabricate Metal-Supported Solid Oxide Fuel Cells with Open-Channel Porous Metal Support, J. Am. Ceram. Soc., 2023, 106, p 68-78. https://doi.org/10.1111/jace.18450

    Article  CAS  Google Scholar 

  35. A.V. Spirin, A.V. Nikonov, A.S. Lipilin, V.R. Khrustov, K.A. Kuterbekov, T.N. Nurakhmetov, and K.Z. Bekmyrza, Effect of Structural Parameters of Ni-ScSZ Cermet Components on the SOFC Anodes Characteristics, Russ. J. Electrochem., 2016, 52, p 613-621. https://doi.org/10.1134/S1023193516070181

    Article  CAS  Google Scholar 

  36. N. Xu, D. Geng, X. Tong, M. Sun, and Z. Xu, Fabrication and Characterization of Co-Fired Metal-Supported Solid Oxide Fuel Cells, Solid State Ion., 2020, 358, p 115482. https://doi.org/10.1016/j.ssi.2020.115482

    Article  CAS  Google Scholar 

  37. J. Lin, G. Miao, C. **a, C. Chen, S. Wang, and Z. Zhan, Optimization of Anode Structure for Intermediate Temperature Solid Oxide Fuel Cell via Phase-Inversion Cotape Casting, J. Am. Ceram. Soc., 2017, 100, p 3794-3800. https://doi.org/10.1111/jace.14907

    Article  CAS  Google Scholar 

  38. N.B. Pavzderin, A.V. Nikonov, S.N. Paranin, K.A. Kuterbekov, and K.Z. Bekmyrza, Pore-Forming Agents for the Supporting Ni-Based SOFC Anode, Russ. J. Electrochem., 2018, 54, p 500-505. https://doi.org/10.1134/S1023193518060150

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Key R&D Program of China (2023YFE0108000), the National Natural Science Foundation of China (52201069), the Young Elite Scientists Sponsorship Program by CAST(2022QNRC001), Guangdong Basic and Applied Basic Research Foundation(2021A1515110260), Guangdong Provincial Key Laboratory Evaluation Special Funding Project (2023B1212060045), Guangzhou Basic and Applied Basic Research Project (202201010219), Guangdong Academy of Sciences Program (2022GDASZH-2022010203-003, 2022GDASZH-2022010201, 2022GDASZH-2022030501-06), GINM' Special Project of Science and Technology Development (2023GINMZX-202301020104), Guangdong Provincial Key Laboratory Evaluation Special Funding Project (2023B1212060045).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen Song or Kaisheng Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Ning, H., Song, C. et al. Effect of Low Plasma Spraying Power on Anode Microstructure and Performance for Metal-Supported Solid Oxide Fuel Cells. J Therm Spray Tech 33, 1725–1735 (2024). https://doi.org/10.1007/s11666-024-01789-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-024-01789-1

Keywords

Navigation