Log in

Toward Efficient Cold Spraying of Inconel 718: Understanding the Influence of Coating and Particle Impact Temperatures

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The production of Inconel 718 coatings using the cold spray process is often challenging due to the limited plastic deformation of particles upon impact associated with its mechanical properties. This leads to the requirement of high spray parameters to achieve dense coating build-up that may result in high and complex residual stresses that can also affect negatively the substrate and lead to nozzle clogging. In this work, the role of the coating and particle impact temperatures is investigated while ensuring they are decoupled from the particle impact velocity. This allows starting to explore potential ways to produce a sound and quality Inconel 718 coating at reduced spray parameters. To decouple and evaluate the role of the particle impact temperature, powder preheating units with downstream injection are used to decouple the particle impact temperature from the particle impact velocity. Three initial particle temperatures are studied: 25, 400 and 750 °C. The effect of the coating temperature on the deposition process is investigated by controlling this temperature independently of the gas stagnation temperature through the use of induction heating. Deposition efficiency, porosity, and micro-hardness are used to assess the coating quality. The coating time–temperature history is measured to better understand its influence on the deposition of Inconel 718. In this work, an enhanced understanding of the effect of both particle and coating temperatures on the coating process is obtained, and the findings allow the establishment of a potential approach to produce dense coatings using reduced spray parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Special Metals, “Inconel 718 Properties,” n.d., p 28, https://www.specialmetals.com/documents/technical-bulletins/inconel/inconel-alloy-718.pdf. Accessed 28 July 2020

  2. R.C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2006. https://doi.org/10.1017/CBO9780511541285

    Book  Google Scholar 

  3. E. Akca and A. Gürsel, A Review on Superalloys and IN718 Nickel-Based INCONEL Superalloy, PEN, 2015 https://doi.org/10.21533/pen.v3i1.43

    Article  Google Scholar 

  4. T.M. Pollock and S. Tin, Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties, J. Propuls. Power, 2006, 22(2), p 361-374.

    Article  CAS  Google Scholar 

  5. C. Lyphout, P. Nylén and L. Östergren, Relationships Between Process Parameters, Microstructure, and Adhesion Strength of HVOF Sprayed IN718 Coatings, J. Therm. Spray Tech., 2011, 20(1-2), p 76-82.

    Article  CAS  Google Scholar 

  6. C. Lyphout, P. Nylen and L.G. Östergren, Adhesion Strength of HVOF Sprayed IN718 Coatings, J. Therm. Spray Tech., 2012, 21(1), p 86-95.

    Article  CAS  Google Scholar 

  7. C. Lyphout, A. Fasth and P. Nylen, Mechanical Property of HVOF Inconel 718 Coating for Aeronautic Repair, J. Therm. Spray Tech., 2014, 23(3), p 380-388.

    Article  CAS  Google Scholar 

  8. C.S. Ramesh, D.S. Devaraj, R. Keshavamurthy and B.R. Sridhar, Slurry Erosive Wear Behaviour of Thermally Sprayed Inconel-718 Coatings by APS Process, Wear, 2011, 271(9-10), p 1365-1371.

    Article  CAS  Google Scholar 

  9. Z. Zhang, D.H.L. Seng, M. Lin, S.L. Teo, T.L. Meng, C.J.J. Lee, Z.-Q. Zhang, T. Ba, J. Guo, K. Sundaravadivelu, P.K. Aw and J. Pan, Cold Spray Deposition of Inconel 718 in Comparison with Atmospheric Plasma Spray Deposition, Appl. Surf. Sci., 2021, 535, p 147704.

    Article  CAS  Google Scholar 

  10. L.I. Pérez-Andrade, F. Gärtner, M. Villa-Vidaller, T. Klassen, J. Muñoz-Saldaña and J.M. Alvarado-Orozco, Optimization of Inconel 718 Thick Deposits by Cold Spray Processing and Annealing, Surf. Coat. Technol., 2019, 378, p 124997.

    Article  Google Scholar 

  11. W. Sun, A.W.Y. Tan, A. Bhowmik, I. Marinescu, X. Song, W. Zhai, F. Li and E. Liu, Deposition Characteristics of Cold Sprayed Inconel 718 Particles on Inconel 718 Substrates with Different Surface Conditions, Mater. Sci. Eng. A, 2018, 720, p 75-84.

    Article  CAS  Google Scholar 

  12. W. Sun, A. Bhowmik, A.W.-Y. Tan, R. Li, F. Xue, I. Marinescu and E. Liu, Improving Microstructural and Mechanical Characteristics of Cold-Sprayed Inconel 718 Deposits via Local Induction Heat Treatment, J. Alloys Compd., 2019, 797, p 1268-1279.

    Article  CAS  Google Scholar 

  13. D. Levasseur, S. Yue and M. Brochu, Pressureless Sintering of Cold Sprayed Inconel 718 Deposit, Mater. Sci. Eng. A, 2012, 556, p 343-350.

    Article  CAS  Google Scholar 

  14. W. Wong, E. Irissou, P. Vo, M. Sone, F. Bernier, J.-G. Legoux, H. Fukanuma and S. Yue, Cold Spray Forming of Inconel 718, J. Therm. Spray Tech., 2013, 22(2–3), p 413-421.

    Article  CAS  Google Scholar 

  15. R. Singh, K.-H. Rauwald, E. Wessel, G. Mauer, S. Schruefer, A. Barth, S. Wilson and R. Vassen, Effects of Substrate Roughness and Spray-Angle on Deposition Behavior of Cold-Sprayed Inconel 718, Surf. Coat. Technol., 2017, 319, p 249-259.

    Article  CAS  Google Scholar 

  16. R. Singh, S. Schruefer, S. Wilson, J. Gibmeier and R. Vassen, Influence of Coating Thickness on Residual Stress and Adhesion-Strength of Cold-Sprayed Inconel 718 Coatings, Surf. Coat. Technol., 2018, 350, p 64-73.

    Article  CAS  Google Scholar 

  17. S. Bagherifard, G. Roscioli, M.V. Zuccoli, M. Hadi, G. D’Elia, A.G. Demir, B. Previtali, J. Kondás and M. Guagliano, Cold Spray Deposition of Freestanding Inconel Samples and Comparative Analysis with Selective Laser Melting, J. Therm. Spray Tech., 2017, 26(7), p 1517-1526.

    Article  CAS  Google Scholar 

  18. R. Vaßen, J. Fiebig, T. Kalfhaus, J. Gibmeier, A. Kostka and S. Schrüfer, Correlation of Microstructure and Properties of Cold Gas Sprayed INCONEL 718 Coatings, J. Therm. Spray Tech., 2020 https://doi.org/10.1007/s11666-020-00988-w

    Article  Google Scholar 

  19. W. Ma, Y. **e, C. Chen, H. Fukanuma, J. Wang, Z. Ren and R. Huang, Microstructural and Mechanical Properties of High-Performance Inconel 718 Alloy by Cold Spraying, J. Alloys Compd., 2019, 792, p 456-467.

    Article  CAS  Google Scholar 

  20. S.Y. Kim, V. Luzin, M.L. Sesso, J. Thornton and S. Gulizia, The Effect of Low Temperature Range Heat Treatment on the Residual Stress of Cold Gas Dynamic Sprayed Inconel 718 Coatings via Neutron Diffraction, J. Therm. Spray Tech., 2020, 29(6), p 1477-1497.

    Article  CAS  Google Scholar 

  21. L. Perez, J. Colburn, L. N. Brewer, M. Renfro, and T. McKechnie. (2021). Cold Spray Deposition of Heat-Treated Inconel 718 Powders. (Eds) by F. Azarmi, X. Chen, J. Cizek, C. Cojocaru, B. Jodoin, H. Koivuluoto, Y. C. Lau, R. Fernandez, O. Ozdemir, H. Salimi Jazi, and F. Toma. (Virtual). doi:https://doi.org/10.31399/asm.cp.itsc2021p0171

  22. X.-T. Luo, M.-L. Yao, N. Ma, M. Takahashi and C.-J. Li, Deposition Behavior, Microstructure and Mechanical Properties of an in-Situ Micro-Forging Assisted Cold Spray Enabled Additively Manufactured Inconel 718 Alloy, Mater. Des., 2018, 155, p 384-395.

    Article  CAS  Google Scholar 

  23. M. Kazasidis, S. Yin, J. Cassidy, T. Volkov-Husović, M. Vlahović, S. Martinović, E. Kyriakopoulou and R. Lupoi, Microstructure and Cavitation Erosion Performance of Nickel-Inconel 718 Composite Coatings Produced with Cold Spray, Surf. Coat. Technol., 2020, 382, p 125195.

    Article  CAS  Google Scholar 

  24. W. Sun, A. Bhowmik, A.W.Y. Tan, F. Xue, I. Marinescu, F. Li and E. Liu, Strategy of Incorporating Ni-Based Braze Alloy in Cold Sprayed Inconel 718 Coating, Surf. Coat. Technol., 2019, 358, p 1006-1012.

    Article  CAS  Google Scholar 

  25. W. Sun, A.W.-Y. Tan, D.J.Y. King, N.W. Khun, A. Bhowmik, I. Marinescu and E. Liu, Tribological Behavior of Cold Sprayed Inconel 718 Coatings at Room and Elevated Temperatures, Surf. Coat. Technol., 2020, 385, p 125386.

    Article  CAS  Google Scholar 

  26. G. Mauer, R. Singh, K.-H. Rauwald, S. Schrüfer, S. Wilson and R. Vaßen, Diagnostics of Cold-Sprayed Particle Velocities Approaching Critical Deposition Conditions, J. Therm. Spray Tech., 2017, 26(7), p 1423-1433.

    Article  CAS  Google Scholar 

  27. J. Villafuerte, Modern Cold Spray: Materials, Process, and Applications, Springer Verlag, Cham, 2015.

    Book  Google Scholar 

  28. H. Assadi, F. Gärtner, T. Stoltenhoff and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater, 2003, 51(15), p 4379-4394.

    Article  CAS  Google Scholar 

  29. S. Rahmati and B. Jodoin, Physically Based Finite Element Modeling Method to Predict Metallic Bonding in Cold Spray, J. Therm. Spray Tech., 2020, 29(4), p 611-629.

    Article  CAS  Google Scholar 

  30. S. Rahmati, R.G.A. Veiga, A. Zúñiga and B. Jodoin, A Numerical Approach to Study the Oxide Layer Effect on Adhesion in Cold Spray, J. Therm. Spray Tech., 2021 https://doi.org/10.1007/s11666-021-01245-4

    Article  Google Scholar 

  31. D.L. Gilmore, R.C. Dykhuizen, R.A. Neiser, T.J. Roemer and M.F. Smith, Particle Velocity and Deposition Efficiency in the Cold Spray Process, J. Therm. Spray Tech., 1999, 8(4), p 576-582.

    Article  CAS  Google Scholar 

  32. R.C. Dykhuizen and M.F. Smith, Gas Dynamic Principles of Cold Spray, J. Therm. Spray Tech., 1998, 7(2), p 205-212.

    Article  CAS  Google Scholar 

  33. S. Yin, X. Suo, H. Liao, Z. Guo and X. Wang, Significant Influence of Carrier Gas Temperature During the Cold Spray Process, Surf. Eng., 2014, 30(6), p 443-450.

    Article  CAS  Google Scholar 

  34. T. Schmidt, F. Gaertner and H. Kreye, New Developments in Cold Spray Based on Higher Gas and Particle Temperatures, J. Therm. Spray Tech., 2006, 15(4), p 488-494.

    Article  CAS  Google Scholar 

  35. A. Nastic, B. Jodoin, D. Poirier and J.-G. Legoux, Particle Temperature Effect in Cold Spray: A Study of Soft Particle Deposition on Hard Substrate, Surf. Coat. Technol., 2021, 406, p 126735.

    Article  CAS  Google Scholar 

  36. H. Assadi, T. Schmidt, H. Richter, J.-O. Kliemann, K. Binder, F. Gärtner, T. Klassen and H. Kreye, On Parameter Selection in Cold Spraying, J. Therm. Spray Tech., 2011, 20(6), p 1161-1176.

    Article  CAS  Google Scholar 

  37. T. Schmidt, F. Gärtner, H. Assadi and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater, 2006, 54(3), p 729-742.

    Article  CAS  Google Scholar 

  38. Y. Hao, J. Wang, X. Cui, J. Wu, T. Li and T. **ong, Microstructure Characteristics and Mechanical Properties of Al-12Si Coatings on AZ31 Magnesium Alloy Produced by Cold Spray Technique, J. Therm. Spray Tech., 2016, 25(5), p 1020-1028.

    Article  CAS  Google Scholar 

  39. D.L. Guo, D. MacDonald, L. Zhao and B. Jodoin, Cold Spray MCrAlY Coatings on Single-Crystal Superalloy Using Nitrogen: Properties and Economics, J. Therm. Spray Tech., 2020 https://doi.org/10.1007/s11666-020-01058-x

    Article  Google Scholar 

  40. R. Jenkins, S. Yin, B. Aldwell, M. Meyer and R. Lupoi, New Insights into the In-Process Densification Mechanism of Cold Spray Al Coatings: Low Deposition Efficiency Induced Densification, J. Mater Sci. Technol., 2019, 35(3), p 427-431.

    Article  CAS  Google Scholar 

  41. M. Bray, A. Cockburn and W. O’Neill, The Laser-Assisted Cold Spray Process and Deposit Characterisation, Surf. Coat. Technol., 2009, 203(19), p 2851-2857.

    Article  CAS  Google Scholar 

  42. J. Yao, L. Yang, B. Li and Z. Li, Beneficial Effects of Laser Irradiation on the Deposition Process of Diamond/Ni60 Composite Coating with Cold Spray, Appl. Surf. Sci., 2015, 330, p 300-308.

    Article  CAS  Google Scholar 

  43. D.J. Barton, V.S. Bhattiprolu, G.B. Thompson and L.N. Brewer, Laser Assisted Cold Spray of AISI 4340 Steel, Surf. Coat. Technol., 2020, 400, p 126218.

    Article  CAS  Google Scholar 

  44. D.J. Barton, V.S. Bhattiprolu, B.C. Hornbuckle, C.M. Batali, K.A. Darling, G.B. Thompson and L.N. Brewer, Residual Stress Generation in Laser-Assisted Cold Spray Deposition of Oxide Dispersion Strengthened Fe91Ni8Zr1, J. Therm. Spray Tech., 2020, 29(6), p 1550-1563.

    Article  CAS  Google Scholar 

  45. D.J. Barton, B.C. Hornbuckle, K.A. Darling, L.N. Brewer and G.B. Thompson, Influence of Surface Temperature in the Laser Assisted Cold Spray Deposition of Sequential Oxide Dispersion Strengthened Layers: Microstructure and Hardness, Mater. Sci. Eng. A, 2021, 811, p 141027.

    Article  CAS  Google Scholar 

  46. R. Ortiz-Fernandez and B. Jodoin, Hybrid Additive Manufacturing Technology: Induction Heating Cold Spray—Part I: Fundamentals of Deposition Process, J. Therm. Spray Tech., 2020, 29(4), p 684-699.

    Article  CAS  Google Scholar 

  47. R. Ortiz-Fernandez and B. Jodoin, Hybrid Additive Manufacturing Technology: Induction Heating Cold Spray—Part II: Coating Mechanical Properties, J. Therm. Spray Tech., 2020, 29(4), p 700-713.

    Article  CAS  Google Scholar 

  48. M. Razavipour, J.-G. Legoux, D. Poirier, B. Guerreiro, J.D. Giallonardo and B. Jodoin, Artificial Neural Networks Approach for Hardness Prediction of Copper Cold Spray Laser Heat Treated Coatings, J. Therm. Spray Tech., 2022, 31(3), p 525-544.

    Article  Google Scholar 

  49. R. Ortiz-Fernandez, S. Imbriglio, R. Chromik and B. Jodoin, The Role of Substrate Preheating on the Adhesion Strength of Cold-Sprayed Soft Particles on Hard Substrates, J. Therm. Spray Tech., 2021 https://doi.org/10.1007/s11666-020-01148-w

    Article  Google Scholar 

  50. F. Raletz, “Contribution Au Développement d’un Procédé de Projection Dynamique à Froid (P.D.F.) Pour La Réalisation de Dépôts de Nickel,” UNIVERSITÉ DE LIMOGES. (2005)

  51. D. MacDonald, S. Rahmati, B. Jodoin and W. Birtch, An Economical Approach to Cold Spray Using In-Line Nitrogen-Helium Blending, J. Therm. Spray Tech., 2019, 28(1-2), p 161-173.

    Article  CAS  Google Scholar 

  52. R. Lupoi and W. O’Neill, Powder Stream Characteristics in Cold Spray Nozzles, Surf. Coat. Technol., 2011, 206(6), p 1069-1076.

    Article  CAS  Google Scholar 

  53. B. Jodoin, Cold Spray Nozzle Mach Number Limitation, J. Therm. Spray Tech., 2002, 11(4), p 496-507.

    Article  Google Scholar 

  54. S. Yin, M. Meyer, W. Li, H. Liao and R. Lupoi, Gas Flow, Particle Acceleration, and Heat Transfer in Cold Spray: A Review, J. Therm. Spray Tech., 2016, 25(5), p 874-896.

    Article  Google Scholar 

  55. T. L. Bergman, A. Lavine, and F. P. Incropera, “Fundamentals of Heat and Mass Transfer.” (2017). https://ebookcentral.proquest.com/lib/qut/detail.action?docID=5106220. Accessed 20 September 2021

  56. Y.A. Çengel and M.A. Boles, Thermodynamics: An Engineering Approach, 7th ed. McGraw-Hill, New York, 2011.

    Google Scholar 

  57. J. Braun, J. Sousa and G. Paniagua, Numerical Assessment of the Convective Heat Transfer in Rotating Detonation Combustors Using a Reduced-Order Model, Appl. Sci., 2018, 8(6), p 893.

    Article  Google Scholar 

  58. P. Liebersbach, A. Foelsche, V.K. Champagne, M. Siopis, A. Nardi and D.P. Schmidt, CFD Simulations of Feeder Tube Pressure Oscillations and Prediction of Clogging in Cold Spray Nozzles, J. Therm. Spray Tech., 2020, 29(3), p 400-412.

    Article  CAS  Google Scholar 

  59. H. Tabbara, S. Gu, D.G. McCartney, T.S. Price and P.H. Shipway, Study on Process Optimization of Cold Gas Spraying, J. Therm. Spray Tech., 2011, 20(3), p 608-620.

    Article  Google Scholar 

  60. S. Yin, Q. Liu, H. Liao and X. Wang, Effect of Injection Pressure on Particle Acceleration, Dispersion and Deposition in Cold Spray, Comput. Mater. Sci., 2014, 90, p 7-15.

    Article  CAS  Google Scholar 

  61. O.C. Ozdemir, C.A. Widener, D. Helfritch and F. Delfanian, Estimating the Effect of Helium and Nitrogen Mixing on Deposition Efficiency in Cold Spray, J. Therm. Spray Tech., 2016, 25(4), p 660-671.

    Article  Google Scholar 

  62. R. Huang and H. Fukanuma, Study of the Influence of Particle Velocity on Adhesive Strength of Cold Spray Deposits, J. Therm. Spray Tech., 2012, 21(3-4), p 541-549.

    Article  CAS  Google Scholar 

  63. X. Suo, S. Yin, M.-P. Planche, T. Liu and H. Liao, Strong Effect of Carrier Gas Species on Particle Velocity During Cold Spray Processes, Surf. Coat. Technol., 2015, 268, p 90-93.

    Article  CAS  Google Scholar 

  64. M. Faizan-Ur-Rab, S.H. Zahiri, S.H. Masood, M. Jahedi and R. Nagarajah, PIV Validation of 3D Multicomponent Model for Cold Spray Within Nitrogen and Helium Supersonic Flow Field, J. Therm. Spray Tech., 2017, 26(5), p 941-957.

    Article  CAS  Google Scholar 

  65. W. Wong, E. Irissou, A.N. Ryabinin, J.-G. Legoux and S. Yue, Influence of Helium and Nitrogen Gases on the Properties of Cold Gas Dynamic Sprayed Pure Titanium Coatings, J. Therm. Spray Tech., 2011, 20(1-2), p 213-226.

    Article  CAS  Google Scholar 

  66. A.G. McDonald, A.N. Ryabinin, E. Irissou and J.-G. Legoux, Gas-Substrate Heat Exchange During Cold-Gas Dynamic Spraying, J. Therm. Spray Tech., 2013, 22(2-3), p 391-397.

    Article  CAS  Google Scholar 

  67. J.G. Legoux, E. Irissou and C. Moreau, Effect of Substrate Temperature on the Formation Mechanism of Cold-Sprayed Aluminum, Zinc and Tin Coatings, J. Therm. Spray Tech., 2007, 16(5-6), p 619-626.

    Article  CAS  Google Scholar 

  68. A.N. Ryabinin, E. Irissou, A. McDonald and J.-G. Legoux, Simulation of Gas-Substrate Heat Exchange during Cold-Gas Dynamic Spraying, Int. J. Therm. Sci, 2012, 56, p 12-18.

    Article  CAS  Google Scholar 

  69. S.H. Zahiri, T.D. Phan, S.H. Masood and M. Jahedi, Development of Holistic Three-Dimensional Models for Cold Spray Supersonic Jet, J. Therm. Spray Tech., 2014, 23(6), p 919-933.

    Article  CAS  Google Scholar 

  70. D. MacDonald, R. Fernández, F. Delloro and B. Jodoin, Cold Spraying of Armstrong Process Titanium Powder for Additive Manufacturing, J. Therm. Spray Tech., 2017, 26(4), p 598-609.

    Article  CAS  Google Scholar 

  71. N. Fan, J. Cizek, C. Huang, X. **e, Z. Chlup, R. Jenkins, R. Lupoi and S. Yin, A New Strategy for Strengthening Additively Manufactured Cold Spray Deposits through In-Process Densification, Addit. Manuf., 2020, 36, p 101626.

    CAS  Google Scholar 

  72. S.V. Klinkov, V.F. Kosarev and M. Rein, Cold Spray Deposition: Significance of Particle Impact Phenomena, Aerosp. Sci. Technol., 2005, 9(7), p 582-591.

    Article  CAS  Google Scholar 

  73. A. Sova, S. Grigoriev, A. Kochetkova and I. Smurov, Influence of Powder Injection Point Position on Efficiency of Powder Preheating in Cold Spray: Numerical Study, Surf. Coat. Technol., 2014, 242, p 226-231.

    Article  CAS  Google Scholar 

  74. C.-J. Li, W.-Y. Li and H. Liao, Examination of the Critical Velocity for Deposition of Particles in Cold Spraying, J. Therm. Spray Tech., 2006, 15(2), p 212-222.

    Article  CAS  Google Scholar 

  75. L. Venkatesh, N.M. Chavan and G. Sundararajan, The Influence of Powder Particle Velocity and Microstructure on the Properties of Cold Sprayed Copper Coatings, J. Therm. Spray Tech., 2011, 20(5), p 1009-1021.

    Article  CAS  Google Scholar 

  76. X.-T. Luo, Y.-J. Li, C.-X. Li, G.-J. Yang and C.-J. Li, Effect of Spray Conditions on Deposition Behavior and Microstructure of Cold Sprayed Ni Coatings Sprayed with a Porous Electrolytic Ni Powder, Surf. Coat. Technol., 2016, 289, p 85-93.

    Article  CAS  Google Scholar 

  77. Q. Wang, N. Birbilis and M.-X. Zhang, Process Optimisation of Cold Spray Al Coating on AZ91 Alloy, Surf. Eng., 2014, 30(5), p 323-328.

    Article  CAS  Google Scholar 

  78. X. Meng, J. Zhang, J. Zhao, Y. Liang and Y. Zhang, Influence of Gas Temperature on Microstructure and Properties of Cold Spray 304SS Coating, J. Mater. Sci. Technol., 2011, 27(9), p 809-815.

    Article  CAS  Google Scholar 

  79. J. Ajaja, D. Goldbaum and R.R. Chromik, Characterization of Ti Cold Spray Coatings by Indentation Methods, Acta Astronaut., 2011, 69(11-12), p 923-928.

    Article  CAS  Google Scholar 

  80. P. Sudharshan Phani, D. Srinivasa Rao, S.V. Joshi and G. Sundararajan, Effect of Process Parameters and Heat Treatments on Properties of Cold Sprayed Copper Coatings, J. Therm. Spray Tech., 2007, 16(3), p 425-434.

    Article  Google Scholar 

  81. D. Goldbaum, J. Ajaja, R.R. Chromik, W. Wong, S. Yue, E. Irissou and J.-G. Legoux, Mechanical Behavior of Ti Cold Spray Coatings Determined by a Multi-Scale Indentation Method, Mater. Sci. Eng. A, 2011, 530, p 253-265.

    Article  CAS  Google Scholar 

  82. W. Wong, P. Vo, E. Irissou, A.N. Ryabinin, J.-G. Legoux and S. Yue, Effect of Particle Morphology and Size Distribution on Cold-Sprayed Pure Titanium Coatings, J. Therm. Spray Tech., 2013, 22(7), p 1140-1153.

    Article  CAS  Google Scholar 

  83. G. Bae, Y. **ong, S. Kumar, K. Kang and C. Lee, General Aspects of Interface Bonding in Kinetic Sprayed Coatings, Acta Mater, 2008, 56(17), p 4858-4868.

    Article  CAS  Google Scholar 

  84. A. Fardan, C.C. Berndt and R. Ahmed, Numerical Modelling of Particle Impact and Residual Stresses in Cold Sprayed Coatings: A Review, Surf. Coat. Technol., 2021, 409, p 126835.

    Article  CAS  Google Scholar 

  85. W. Li, K. Yang, D. Zhang and X. Zhou, Residual Stress Analysis of Cold-Sprayed Copper Coatings by Numerical Simulation, J. Therm. Spray Tech., 2016, 25(1–2), p 131-142.

    Article  CAS  Google Scholar 

  86. A.S.M. Ang and C.C. Berndt, A Review of Testing Methods for Thermal Spray Coatings, Int. Mater. Rev., 2014, 59(4), p 179-223.

    Article  CAS  Google Scholar 

  87. S. Kuroda and T.W. Clyne, The Quenching Stress in Thermally Sprayed Coatings, Thin Solid Films, 1991, 200(1), p 49-66.

    Article  CAS  Google Scholar 

  88. Y.-K. Wei, X.-T. Luo, Y. Ge, X. Chu, G.-S. Huang and C.-J. Li, Deposition of Fully Dense Al-Based Coatings via in-Situ Micro-Forging Assisted Cold Spray for Excellent Corrosion Protection of AZ31B Magnesium Alloy, J. Alloys Compd., 2019, 806, p 1116-1126.

    Article  CAS  Google Scholar 

  89. R. Fernandez and B. Jodoin, Cold Spray Aluminum-Alumina Cermet Coatings: Effect of Alumina Content, J. Therm. Spray Tech., 2018, 27(4), p 603-623.

    Article  CAS  Google Scholar 

  90. S.-L. Fu, C.-X. Li, Y.-K. Wei, X.-T. Luo, G.-J. Yang, C.-J. Li and J.-L. Li, Novel Method of Aluminum to Copper Bonding by Cold Spray, J. Therm. Spray Tech., 2018, 27(4), p 624-640.

    Article  CAS  Google Scholar 

  91. Y. **e, M.-P. Planche, R. Raoelison, P. Hervé, X. Suo, P. He and H. Liao, Investigation on the Influence of Particle Preheating Temperature on Bonding of Cold-Sprayed Nickel Coatings, Surf. Coat. Technol., 2017, 318, p 99-105.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Michel Nganbe for facilitating the use of the induction heating system used in this work for the production of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Ortiz-Fernandez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz-Fernandez, R., Jodoin, B. Toward Efficient Cold Spraying of Inconel 718: Understanding the Influence of Coating and Particle Impact Temperatures. J Therm Spray Tech 32, 188–207 (2023). https://doi.org/10.1007/s11666-022-01490-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01490-1

Keywords

Navigation