Log in

HVOF- and HVAF-Sprayed Cr3C2-NiCr Coatings Deposited from Feedstock Powders of Spherical Morphology: Microstructure Formation and High-Stress Abrasive Wear Resistance Up to 800 °C

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Chromium carbide-based coatings are commonly applied to protect surfaces against wear at high temperatures. This work discusses the influence of feedstock powder and spray torch selection on the microstructure and high-stress abrasion resistance of thermally sprayed Cr3C2-NiCr coatings. Four commercial feedstock powders with spherical morphology and different microstructures were deposited by different high-velocity spray processes, namely third-generation gas- and liquid-fueled HVOF torches and by the latest generation HVAF torch. The microstructures of the coatings were studied in the as-sprayed state and after various heat treatments. The high-stress abrasion resistance of as-sprayed and heat-treated coatings was tested at room temperature and at 800 °C. The study reveals that the selection of the spray torch mainly affects the room temperature abrasion resistance of the as-sprayed coatings, which is due to differences in the embrittlement of the binder phase generated by carbide dissolution. At elevated temperatures, precipitation and growth of secondary carbides yields a fast equalization of the various coatings microstructures and wear properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. A typical flame temperature of 1900-1950 °C is specified by the manufacturer Uniquecoat Technologies.

References

  1. L.-M. Berger, Coatings by thermal spray, Comprehensive Hard Materials, 1st ed., V.K. Sarin, D. Mari, L. Llanes, and C. Nebel, Ed., Elsevier, Amsterdam, 2014, p 471-506

    Chapter  Google Scholar 

  2. P. Vuoristo, K. Niemi, A. Mäkelä, and T. Mäntylä, Abrasion and erosion wear resistance of Cr3C2-NiCr coatings prepared by plasma, detonation and high-velocity oxyfuel spraying, Proceedings of 7th National Thermal Spray Conference, 20–24 June 1994, Boston, Massachusetts, C.C. Berndt and S. Sampath, Ed., ASM International, Materials Park, 1994, p 121-126

    Google Scholar 

  3. S. Wirojanupatump, P.H. Shipway, and D.G. McCartney, The Influence of HVOF Powder Feedstock Characteristics on the Abrasive Wear Behaviour of CrxCy-NiCr Coatings, Wear, 2001, 249(9), p 829-837

    Article  Google Scholar 

  4. J.M. Guilemany, N. Espallargas, P.H. Suegama, and A.V. Benedetti, Comparative Study of Cr3C2-NiCr Coatings Obtained by HVOF and Hard Chromium Coatings, Corros. Sci., 2006, 48(10), p 2998-3001

    Article  Google Scholar 

  5. N. Espallargas, J. Berget, J.M. Guilemany, A.V. Benedetti, and P.H. Suegama, Cr3C2-NiCr and WC-Ni Thermal Spray Coatings as Alternatives to Hard Chromium for Erosion-Corrosion Resistance, Surf. Coat. Technol., 2008, 202(8), p 1405-1417

    Article  Google Scholar 

  6. J.F. Pelton and J.M. Koffskey, Jr., Coating Composition, Method of Application, and Product Thereof, US 3,150,938, filed: 9.6.1960, granted: 29.9.1964 (also: GB 929,205)

  7. S. Matthews, B. James, and M. Hyland, The Effect of Heat Treatment of the Oxidation Mechanism of Blended Powder Cr3C2-NiCr Coatings, J. Therm. Spray Technol., 2010, 19(1-2), p 119-127

    Article  Google Scholar 

  8. M. Sasaki, F. Kawakami, C. Komaki, and M. Ishida, Characterization of HVOF sprayed Cr3C2 coating, Thermal Spray: International Advance in Coatings Technology: Proceedings of International Thermal Spray Conference, 28 May–5 June 1992, Orlando, Florida, C.C. Berndt, Ed., ASM International, Materials Park, 1992, p 165-170

    Google Scholar 

  9. L. Russo and M. Dorfman, A structural evaluation of HVOF sprayed NiCr-Cr3C2 coatings, Thermal Spraying: Current Status and Future Trends: Proceedings of 14th International Thermal Spray Conference, 22-26 May, 1995, Kobe, Japan, A. Ohmori, Ed., High Temperature Society of Japan, Osaka, 1995, p 681-686

    Google Scholar 

  10. H. Keller, E. Pross, and G. Schwier, Influence of the Powder Type on the Structure and the Properties of Chromium Carbide/Nickel Chromium Coatings, Offprint, H.C. Starck GmbH & Co. KG, Wroclaw, 2000, p 8

    Google Scholar 

  11. S. Zimmermann and H. Keller, Powder—just one precondition for the success of the coating, 8. Kolloqium HVOF spraying, Nov 5-6, 2009 (Erding, Germany), Gemeinschaft Thermisches Spritzen e.V., 2009, p 167-173.

  12. L.-M. Berger, R. Puschmann, J. Spatzier, and S. Matthews, Potential of HVAF Spray Processes, Therm. Spray Bull., 2013, 6(1), p 16-20

    Google Scholar 

  13. G. Bolelli, L.-M. Berger, T. Börner, H. Koivuluoto, V. Matikainen, L. Lusvarghi, C. Lyphout, N. Markocsan, P. Nylén, P. Sassatelli, R. Trache, and P. Vuoristo, Sliding and Abrasive Wear Behaviour of HVOF- and HVAF-Sprayed Cr3C2–NiCr Hardmetal Coatings, Wear, 2016, 358-359, p 32-50

    Article  Google Scholar 

  14. L.-M. Berger, R. Trache, F.-L. Toma, S. Thiele, J. Norpoth, and L. Janka, Development of Cost-Effective Hardmetal Coating Solutions for High-Temperature Applications, Part One: Feedstock Powders, Cost-Effectiveness and Coating Properties, Therm. Spray Bull., 2015, 8(2), p 126-139

    Google Scholar 

  15. H. Kreye, F. Gärtner, and H.J. Richter, Hochgeschwindigkeits-Flammspritzen - Stand der Technik, neue Entwicklungen und Alternativen/High Velocity Oxy-Fuel Flame Spraying - State of the Art, new Developments and Alternatives, Proc. 6. Kolloqium HochgeschwindigkeitsFlammspritzen, Nov 27–28, 2003 (Erding, Germany), P. Heinrich, Ed., Gemeinschaft Thermisches Spritzen e.V., 2003, p 5-17.

  16. V. Matikainen, G. Bolelli, H. Koivuluoto, M. Honkanen, M. Vippola, L. Lusvarghi, and P. Vuoristo, A Study of Cr3C2-Based HVOF- and HVAF-Sprayed Coatings: Microstructure and Carbide Retention, J. Therm. Spray Technol., 2017, 26(6), p 1239-1256

    Article  Google Scholar 

  17. V. Matikainen, G. Bolelli, H. Koivuluoto, P. Sassatelli, L. Lusvarghi, and P. Vuoristo, Sliding Wear Behaviour of HVOF and HVAF Sprayed Cr3C2-Based Coatings, Wear, 2017, doi:10.1016/j.wear.2017.04.001

    Google Scholar 

  18. G.J. Yang, C.J. Li, S.J. Zhang, and C.X. Li, High-Temperature Erosion of HVOF Sprayed Cr3C2–NiCr Coatings and Mild Steel for Boiler Tubes, J. Therm. Spray Technol., 2008, 17, p 782-787

    Article  Google Scholar 

  19. G.C. Ji, C.J. Li, Y.Y. Wang, and W.Y. Li, Microstructural Characterization and Abrasive Wear Performance of HVOF Sprayed Cr3C2-NiCr Coating, Surf. Coat. Technol., 2006, 200(24), p 6749-6757

    Article  Google Scholar 

  20. G.C. Ji, C.J. Li, Y.Y. Wang, and W.Y. Li, Erosion Performance of HVOF-Sprayed Cr3C2–NiCr Coatings, J. Therm. Spray Technol., 2007, 16, p 557-565

    Article  Google Scholar 

  21. Š. Houdková, F. Zahálka, M. Kašparová, and L.M. Berger, Comparative Study of Thermally Sprayed Coatings Under Different Types of Wear Conditions for Hard Chromium Replacement, Tribol. Lett., 2011, 43, p 139-154

    Article  Google Scholar 

  22. R. Schwetzke and H. Kreye, Cavitation erosion of HVOF coatings, chromium carbide coatings produced with various HVOF spray systems, Thermal Spray: Practical Solutions for Engineering Problems, Oct 7–11, 1996 (Cincinnati, OH), C.C. Berndt, Ed., ASM International, 1996, p 153-158.

  23. L. Janka, J. Norpoth, R. Trache, and L.-M. Berger, Influence of Heat Treatment on the Abrasive Wear Resistance of a Cr3C2-NiCr Coating Deposited by an Ethene-Fueled HVOF Spray Process, Surf. Coat. Technol., 2016, 291, p 444-451

    Article  Google Scholar 

  24. L.-M. Berger, J. Spatzier, J. Bretschneider, K. Lipp, and S. Thiele, Rolling Contact Fatigue of HVOF-Sprayed Hardmetal Coatings on Unhardened Substrates, Therm. Spray Bull., 2009, 2(2), p 133-140

    Google Scholar 

  25. S. Zimmermann and H. Kreye, Chromium carbide coatings produced with various HVOF spray systems, Thermal Spray: Practical Solutions for Engineering Problems, Oct 7–11, 1996 (Cincinnati, OH), C.C. Berndt, Ed., ASM International, 1996, p 147-152.

  26. F. Otsubo, H. Era, K. Kishitake, and T. Uchida, Properties of Cr3C2-NiCr Cermet Coating Sprayed by High Power Plasma and High Velocity Oxy-Fuel Processes, J. Therm. Spray Technol., 2000, 9(4), p 499-504

    Article  Google Scholar 

  27. J.K.N. Murthy, S. Bysakh, K. Gopinath, and B. Venkataraman, Microstructure Dependent Erosion in Cr3C2-20(NiCr) Coating Deposited by a Detonation Gun, Surf. Coat. Technol., 2007, 202(1), p 1-12

    Article  Google Scholar 

  28. J.M. Guilemany, J.M. Miguel, S. Vizcaino, C. Lorenzana, J. Delgado, and J. Sanchez, Role of Heat Treatments in the Improvement of the Sliding Wear Properties of Cr3C2-NiCr Coatings, Surf. Coat. Technol., 2002, 157(2), p 207-213

    Article  Google Scholar 

  29. S. Matthews, M. Hyland, and B. James, Microhardness Variation in Relation to Carbide Development in Heat Treated Cr3C2-NiCr Thermal Spray Coatings, Acta Mater., 2003, 51(14), p 4267-4277

    Article  Google Scholar 

  30. S. Matthews and L.-M. Berger, Long-Term Compositional/Microstructural Development of Cr3C2-NiCr Coatings at 500, 700 and 900 °C, Int. J. Ref. Met. Hard Mater., 2016, 59, p 1-18

    Article  Google Scholar 

  31. E. Gariboldi, L. Rovatti, N. Lecis, L. Mondora, and G.A. Mondora, Tribological and Mechanical Behaviour of Cr3C2-NiCr Thermally Sprayed Coatings after Prolonged Aging, Surf. Coat. Technol., 2016, 305, p 83-92

    Article  Google Scholar 

  32. S. Matthews, M. Hyland, and B. James, Long-Term Carbide Development in High-Velocity Oxygen Fuel/High Velocity Air Fuel Cr3C2-NiCr Coatings Heat Treated at 900 °C, J. Therm. Spray Technol., 2004, 13(4), p 526-536

    Article  Google Scholar 

  33. J. He, M. Ice, J.M. Schoenung, D.H. Shin, and E.J. Lavernia, Thermal Stability of Nanostructured Cr3C2-NiCr Coatings, J. Therm. Spray Technol., 2001, 10(2), p 293-300

    Article  Google Scholar 

  34. P.H. Suegama, N. Espallargas, J.M. Guilemany, J. Fernández, and A.V. Benedetti, Electrochemical and Structural Characterization of Heat-Treated Cr3C2-NiCr Coatings, J. Electrochem. Soc., 2006, 153(10), p B434-B445

    Article  Google Scholar 

  35. S. Matthews, B. James, and M. Hyland, The Role of Microstructure in the Mechanism of High Velocity Erosion of Cr3C2-NiCr Thermal Spray Coatings: Part 2 - Heat Treated Coatings, Surf. Coat. Technol., 2009, 203(8), p 1094-1100

    Article  Google Scholar 

  36. J.K.N. Murthy, K. Satya Prasad, K. Gopinath, and B. Venkataraman, Characterisation of HVOF sprayed Cr3C2-50(Ni20Cr) Coating and the Influence of Binder Properties on Solid Particle Erosion Behaviour, Surf. Coat. Technol., 2010, 204(24), p 3975-3985

    Article  Google Scholar 

  37. L.-M. Berger, R. Trache, F.-L. Toma, S. Thiele, J. Norpoth, and L. Janka, Development of Cost-Effective Hardmetal Coating Solutions for High-Temperature Applications, Part Two: Effect of Heat Treatment and Tribological Properties, Therm. Spray Bull., 2016, 9(1), p 45-53

    Google Scholar 

  38. C.A. Schneider, W.S. Rasband, and K.W. Eliceiri, NIH Image to ImageJ: 25 Years of Image Analysis, Nat. Methods, 2012, 9, p 671-675

    Article  Google Scholar 

  39. M. Varga, H. Rojacz, H. Winkelmann, H. Mayer, and E. Badisch, Wear Reducing Effects and Temperature Dependence of Tribolayer Formation in Harsh Environment, Tribol. Int., 2013, 65, p 190-199

    Article  Google Scholar 

  40. L.-M. Berger, S. Thiele, T. Börner, L. Janka, and M. Rodriguez Ripoll, Influence of Cr3C2-NiCr feedstock powder characteristics on the deposition efficiency, coating microstructures and abrasion wear resistance, International Thermal Spray Conference & Exhibition ITSC 2014, Conference Proceedings, May 21–23, 2014, (Barcelona, Spain), DVS-Berichte vol. 302, Düsseldorf, DVS Media, 2014, CD, p. 806-812.

  41. R. Trache, F.-L. Toma, C. Leyens, L.-M. Berger, S. Thiele, and A. Michaelis, Effects of powder characteristics and high velocity flame spray processes on Cr3C2-NiCr-coatings, ITSC 2015: innovative coating solutions for the global economy, Proceedings of the International Thermal Spray Conference, May 11–14, 2015 (Long Beach, CA, USA), A. McDonald, A. Agarwal, G. Bolelli, A. Concustell, Y.-C. Lau, F.-L. Toma, E. Turunen, and C. Widener, Eds., ASM International, Materials Park, 2015, p. 988-995.

  42. G. Bolelli, L.-M. Berger, T. Börner, H. Koivuluoto, L. Lusvarghi, C. Lyphout, N. Markocsan, V. Matikainen, P. Nylén, P. Sassatelli, R. Trache, and P. Vuoristo, Tribology of HVOF- and HVAF-Sprayed WC-10Co4Cr Hardmetal Coatings: A Comparative Assessment, Surf. Coat. Technol., 2015, 265, p 125-144

    Article  Google Scholar 

  43. C.J. Li, G.C. Ji, Y.Y. Wang, and K. Sonoya, Dominant Effect of Carbide Rebounding on the Carbon Loss during High Velocity Oxy-Fuel Spraying of Cr3C2-NiCr, Thin Solid Films, 2002, 419(1–2), p 137-143

    Article  Google Scholar 

  44. H.C. Lee and J. Gurland, Hardness and Deformation of Cemented Tungsten Carbide, Mater. Sci. Eng., 1978, 33(1), p 125-133

    Article  Google Scholar 

  45. L. Janka, J. Norpoth, S. Eicher, M. Rodriguez Ripoll, and P. Vuoristo, Improving the Toughness of Thermally Sprayed Cr3C2-NiCr Hardmetal Coatings by Laser Post-Treatment, Mater. Des., 2016, 98, p 135-142

    Article  Google Scholar 

  46. E. Rabinowicz, Friction and Wear of Materials, 2nd ed., Wiley, Hoboken, 1995

    Google Scholar 

Download references

Acknowledgments

This work was co-funded by the Austrian Research Promotion Agency (FFG) under Project Nos. 839126 and 849109 (COMET K2 XTribology), and the German Ministry of Economic Affairs and Energy via AiF under Project Nos. IGF 91 EBR, DVS no. 02.091. We thank Durum Verschleißschutz GmbH (Willich, Germany), GTV Verschleißschutz GmbH (Luckenbach, Germany), H.C. Starck GmbH (München, Germany) and Oerlikon Metco Woka GmbH (Barchfeld, Germany) for providing the feedstock powders, voestalpine AG (Linz, Austria) for providing the substrates, and KVT Kurlbaum AG (Osterholz-Scharmbeck, Germany) and Putzier Oberflächentechnik GmbH (Leichlingen, Germany) for the deposition of the coatings, as well as GfE Fremat GmbH (Freiberg, Germany) for the non-metal analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Norpoth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janka, L., Norpoth, J., Trache, R. et al. HVOF- and HVAF-Sprayed Cr3C2-NiCr Coatings Deposited from Feedstock Powders of Spherical Morphology: Microstructure Formation and High-Stress Abrasive Wear Resistance Up to 800 °C. J Therm Spray Tech 26, 1720–1731 (2017). https://doi.org/10.1007/s11666-017-0621-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-017-0621-y

Keywords

Navigation