Log in

Other Aspects of the Impact Fracture Toughness-Microstructure Relationship in Nano-bainitic Steels

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The relationship between impact fracture toughness and the microstructure in a composition of nano-bainitic steel was investigated in this study. To achieve bainitic microstructures, samples were austenitized at 950 °C for 30 minutes and then austempered at 200, 250, and 300 °C for different times for completion of transformation. Mechanical properties were evaluated using hardness measurements and Charpy impact tests. Microstructure and fracture surfaces were analyzed using optical microscopy, image analysis software, thermodynamic modeling software, X-Ray diffraction (XRD) analysis, and scanning electron microscopy. The results showed that the comparison of the retained austenite volume fraction obtained through image analysis agreed well with the results from XRD pattern analysis. The values of bainitic ferrite calculated by the thermodynamic model also agreed well with the results obtained through the XRD method. The results also indicated that impact toughness was significantly influenced by the amount and mechanical stability of retained austenite, while the effects of martensite and bainite plate thickness were less significant. Fracture surface analysis further revealed a transition in fracture mode from numerous dimples and some cleavage to a brittle fracture mode predominantly dominated by cleavage facets as the transformation temperature decreased. In conclusion, the impact fracture mode can be described as quasi-cleavage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H.K.D.H. Bhadeshia, Bainite in Steels, 2nd ed. IOM communications, London, 2002.

    Google Scholar 

  2. C. Garcia-Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia, Mechanical Properties of Low Temperature Bainite, Mater. Sci. Forum, 2005, 500–501, p 495–502. https://doi.org/10.4028/www.scientific.net/MSF.500-501.495

    Article  Google Scholar 

  3. F.G. Caballero, and H.K.D.H. Bhadeshia, Very Strong Bainite, Curr. Opin. Solid State Mater. Sci., 2004, 8, p 251–257. https://doi.org/10.1016/j.cossms.2004.09.005

    Article  CAS  Google Scholar 

  4. F.G. Caballero, M.J. Santofimia, C. Capdevila, C. García-Mateo, and C. García de Andrés, Design of Advanced Bainitic Steels by Optimization of TTT Diagrams and to Curves, ISIJ Int., 2006, 46, p 1479–1488. https://doi.org/10.2355/isi**ternational.46.1479

    Article  CAS  Google Scholar 

  5. C. Garcia-Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia, Low Temperature Bainite, J. phys., Colloq., 2003, 112, pp 1238–1343. https://doi.org/10.1051/jp4:2003884

  6. C. Garcia-Mateo, and F.G. Caballero, Ultra-High–Strength Bainitic Steels, ISIJ Int., 2005, 45(11), p 1736–1740. https://doi.org/10.2355/isi**ternational.45.1736

    Article  CAS  Google Scholar 

  7. H.K.D.H. Bhadeshia, Hard bainite, The Minerals, Metals, and Materials Society, 2005, 1, pp 469–484. http://www.phase-trans.msm.cam.ac.uk/2006/PTM05.pdf

  8. F.G. Caballero, C. Garcia-Mateo, and H.K.D.H. Bhadeshia, Development of Hard Bainite, ISIJ Int., 2003, 43(8), p 1238–1243. https://doi.org/10.2355/isi**ternational.43.1238

    Article  Google Scholar 

  9. Mohamed Y. Sherif., Characterisation, and Development of Nanostructured, Ultrahigh Strength, and Ductile Bainitic Steels, PHD. Thesis University of Cambridge, 2006.

  10. C. Garcia-Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia, Acceleration of Low-Temperature Bainite, ISIJ Int., 2003, 43, p 1821–1825. https://doi.org/10.2355/isi**ternational.43.1821

    Article  CAS  Google Scholar 

  11. S.K. Putatunda, Fracture Toughness of a High Carbon, and High Silicon Steel, Mater. Sci. Eng. A, 2001, 297(1–2), p 31–43. https://doi.org/10.1016/S0921-5093(00)01272-7

    Article  Google Scholar 

  12. E. Kozeschnik, and H.K.D.H. Bhadeshia, Influence of Silicon on Cementite Precipitation in Steels Mater, Sci. Technol., 2008, 24(343), p 347. https://doi.org/10.1179/174328408X275973

    Article  CAS  Google Scholar 

  13. F.G. Caballero, and H.K.D.H. Bhadeshia, Very Strong Low Temperature Bainite, Mater. Sci. Technol., 2002, 18, p 279–283. https://doi.org/10.1179/026708301225000725

    Article  CAS  Google Scholar 

  14. F.G. Caballeroa, J. Chao, J. Cornide, C. García-Mateo, M.J. Santofimia, and C. Capdevila, Toughness Deterioration in Advanced High Strength Bainitic Steels, Mater. Sci. Eng. A, 2009, 525, p 87–95. https://doi.org/10.1016/j.msea.2009.06.034

    Article  CAS  Google Scholar 

  15. B. Avishan, S. Yazdani, and S.H. Nedjad, Toughness Variations in Nanostructured Bainitic Steels, Mater. Sci. Eng. A, 2012, 548, p 106–111. https://doi.org/10.1016/j.msea.2012.03.098

    Article  CAS  Google Scholar 

  16. J. Hu, Low-Density Nanostructured Bainitic Steel with Fast Transformation Rate, and High Impact-Toughness, Mater. Lett., 2020, 261, p 127105. https://doi.org/10.1016/j.matlet.2019.127105

    Article  CAS  Google Scholar 

  17. A. Kumar, A. Singh. Mechanical Properties of Nanostructured Bainitic Steels. Materialia, 2021, p 101034, https://doi.org/10.1016/j.mtla.2021.101034.

  18. F. Zhang, and Z. Yang, Development of and Perspective on High-Performance Nanostructured Bainitic Bearing Steel, Engineering, 2019, 5(2), p 319–328. https://doi.org/10.1016/j.eng.2018.11.024

    Article  CAS  Google Scholar 

  19. Y.H. Wang, F.C. Zhang, and T.S. Wang, A Novel Bainitic Steel Comparable to Maraging Steel in Mechanical Properties, Scr. Mater., 2013, 9, p 763–766. https://doi.org/10.1016/j.scriptamat.2012.12.031

    Article  CAS  Google Scholar 

  20. P.V. Moghaddam, M. Rinaudo, J. Hardell, E. Vuorinen, and B. Prakash, Influence of Fracture Toughness on Two-Body Abrasive Wear of Nanostructured Carbide-Free Bainitic Steels, Wear, 2020, 460, p 203484. https://doi.org/10.1016/j.wear.2020.203484

    Article  CAS  Google Scholar 

  21. H.K.D.H. Bhadeshia, Materials Algorithms Project, http://www.msm.cam.ac.uk/map/steel/programs/mucg83.html

  22. Standard Practice for x-ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation, E975-84, Annual Book of ASTM Standards, 03.01, ASTM, 1990, pp 753–757

  23. M.N. Yoozbashi, and S. Yazdani, Mechanical Properties of Nanostructured, Low Temperature Bainitic Steel Designed Using a Thermodynamic Model, Mater. Sci. Eng. A, 2010, 527(13–14), p 3200–3205. https://doi.org/10.1016/j.msea.2010.01.080

    Article  CAS  Google Scholar 

  24. M.N. Yoozbashi, and S. Yazdani, XRD and TEM Study of Bainitic Ferrite Plate Thickness in Nanostructured, Carbide free Bainitic Steels, Mater. Chem. Phys., 2015, 160, p 148–154. https://doi.org/10.1016/j.matchemphys.2015.03.071

    Article  CAS  Google Scholar 

  25. G.F. Vander Voort, Heat Treating Progress, 2001, 1(2), p 25

  26. G.F. Vander Voort, ASM Handbook: Metallography and Microstructures, ASM International, 2004

  27. Standard Test Methods for Notched bar Impact Testing of Metallic Materials, E 23-88, Annual Book of ASTM Standards, 03.01, ASTM, 1990, p 273. https://pdfcoffee.com/astm-e23-02a-notched-bar-impact-testing-of-metallic-materialspdf-pdf-free.html

  28. S. Yazdani, and R. Elliott, Influence of Molybdenum on Austempering Behaviour of Ductile iron Part 3–Austempering kinetics, Mechanical Properties, and Hardenability of Ductile Iron Containing 0·25% Mo, Mater. Sci. Technol., 1999, 15(8), p 885–895. https://doi.org/10.1179/026708399101506689

    Article  CAS  Google Scholar 

  29. H. Jiang, H. Wu, D. Tang, and Q. Liu, Influence of Isothermal Bainitic Processing on the Mechanical Properties and Microstructure Characterization of TRIP Steel, J Univ Sci Technol Bei**g, Mineral, Metall, Mater, 2008, 15(5), p 574–579. https://doi.org/10.1016/S1005-8850(08)60107-3

    Article  CAS  Google Scholar 

  30. X. Wang, C. Liu, Y. Qin, Y. Li, Z. Yang, X. Long, M. Wang, and F. Zhang, Effect of Tempering Temperature on Microstructure and Mechanical Properties of Nanostructured Bainitic Steel, Mater. Sci. Eng. A, 2022, 832, p 142357. https://doi.org/10.1016/j.msea.2021.142357

    Article  CAS  Google Scholar 

  31. J. Zhao, J. Li, H. Ji, and T. Wang, Effect of Austenitising Temperature on Mechanical Properties of Nanostructured Bainitic Steel, Materials, 2017, 10(8), p 874–883. https://doi.org/10.3390/ma10080874

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mir Nariman Yoozbashi or Sasan Yazdani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoozbashi, M.N., Zolfaghari, R., Yazdani, S. et al. Other Aspects of the Impact Fracture Toughness-Microstructure Relationship in Nano-bainitic Steels. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-023-08971-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08971-6

Keywords

Navigation