Log in

Annealing Behavior of Cold-Rolled Inconel 601

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Present study investigates isothermal annealing behavior of prior cold-worked Inconel 601 (aka, IN 601) sheets. The study comprehensively covers the annealing response of the material over wide cold-reduction and temperature ranges. Using structural characterization and mechanical testing, the study tracks strain-hardening, strain-aging, recovery, and recrystallization stages of IN 601 sheets as a function of degree of cold-reduction and annealing temperature. Using X-Ray diffraction analysis, hardness measurements, and tensile tests, the study reveals that prior cold-worked IN 601, irrespective of the degree of cold-reduction, consistently exhibits strain-aging during low-temperature (~ 0.4Tm) annealing. The investigation establishes that the ‘recovery stage’ is preceded by ‘strain-aging-stage’ during which the alloy exhibits superior strength and hardness than the strain-hardened and recovered states. Based on the thermomechanical experimental results, the current work proposes a recrystallization map that integrates the ‘strain-hardening’ and ‘strain-aging’ stages with the recovery and recrystallization stages. Additionally, microstructural analysis and SEM-EBSD analysis presented in this work indicate that, by suitably controlling strain-hardening and the recrystallization annealing, a refined microstructure comprising high aspect-ratio grains having high-angle grain-boundaries can be obtained that may improve both fatigue and creep properties of IN 601 sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. R.C. Reed, and C.M.F. Rae, in Physical Metallurgy, 5th edn. ed by D.E. Laughlin, and K. Hono, 22—Physical Metallurgy of the Nickel-Based Superalloys, (Elsevier, Oxford, 2014), p 2215–2290. https://doi.org/10.1016/B978-0-444-53770-6.00022-8.

  2. M.J. Donachie, Superalloys: A Technical Guide, 2nd Edition, America, 2002, p 1–409.

  3. M. Sarvghad, S. Bell, R. Raud, T.A. Steinberg, and G. Will, Stress Assisted Oxidative Failure of Inconel 601 for Thermal Energy Storage, Sol. Energy Mater. Sol. Cells, 2017, 159, p 510–517. https://doi.org/10.1016/j.solmat.2016.10.008

    Article  CAS  Google Scholar 

  4. J.G. Gonzalez-Rodriguez, and L. Fionova, The Effect of Structural Evolution in INCONEL 601 on Intergranular Corrosion, Mater. Chem. Phys., 1998, 56(1), p 70–73.

    Article  CAS  Google Scholar 

  5. S. Mannan and S. Patel, A New Ni-Base Superalloy for Oil and Gas Applications. In: Proceedings of the International Symposium on Superalloys, 2008, p 31–39.

  6. Y. Gu, C. Cui, H. Harada, T. Fukuda, D. **, A. Mitsuhashi, K. Kato, T. Kobayashi, and J. Fujioka, Development of Ni-Co-Base Alloys for High-Temperature Disk Applications, 2010, p 53–61.

  7. D.D. Whitis, Recovery and Recrystallization after Critical Strain in the Nickel-Based Superalloy René 88DT. In: Proceedings of the International Symposium on Superalloys, 2004, p 391–400.

  8. Y. Yamaguchi, H. Doryo, M. Yuasa, H. Miyamoto, and M. Yamanaka, Deformation and Recrystallization Behavior of Super High-Purity Niobium for SRF Cavity. In: IOP Conference Series: Materials Science and Engineering, 2017, vol. 194(1).

  9. A.I. Fernández, P. Uranga, B. López, and J.M. Rodriguez-Ibabe, Static Recrystallization Behaviour of a Wide Range of Austenite Grain Sizes in Microalloyed Steels, ISIJ Int., 2000, 40(9), p 893–901.

    Article  Google Scholar 

  10. M. Almojil and P.S. Bate, Cold Rolling and Annealing Microstructures and Textures of Low Carbon Steels, Mater. Sci. Forum, 2010, 654–656, p 214–217.

    Article  Google Scholar 

  11. A. Rollett, G.S. Rohrer, and J. Humphreys, Recrystallization and Related Annealing Phenomena, Elsevier, 2017, vol. 165, p 1–704. https://doi.org/10.1016/j.matchar.2020.110382

  12. R.P. Singh, J.M. Hyzak, T.E. Howson, and R.R. Biederman, Recrystallization Behavior of Cold Rolled Alloy, Super Alloys, 2012, 718, p 205–215.

    Google Scholar 

  13. D.P. Dunne, Recrystallization in Cold-Rolled Fe-V-C Alloy Containing Fine Carbides, Met. Sci., 1982, 16(5), p 259–267.

    Article  CAS  Google Scholar 

  14. C.Y. Cui, C.G. Tian, Y.Z. Zhou, T. **, and X.F. Sun, Dynamic Strain Aging in Ni Base Alloys with Different Stacking Fault Energy, Superalloys, 2012, 2012, p 715–722.

    Article  Google Scholar 

  15. H. Stahl, G. Smith, and S. Wastiaux, Strain-Age Cracking of Alloy 601 Tubes at 600 °C, Pract. Fail. Anal., 2001, 1(1), p 51–54. https://doi.org/10.1007/s11668-006-5014-3

    Article  Google Scholar 

  16. K. Gopinath, A. Gogia, S. Kamat, and U. Ramamurty, Dynamic Strain Ageing in Ni-Base Superalloy 720Li, Acta Mater., 2009, 57, p 1243–1253.

    Article  CAS  Google Scholar 

  17. C.V. Rao, N.C.S. Srinivas, G.V.S. Sastry, and V. Singh, Dynamic Strain Aging, Deformation and Fracture Behaviour of the Nickel Base Superalloy Inconel 617, Mater. Sci. Eng. A, 2019, 742, p 44–60. https://doi.org/10.1016/j.msea.2018.10.123

    Article  CAS  Google Scholar 

  18. K. Sourabh and J.B. Singh, Tensile Behavior of Alloy 690 in the Dynamic Strain Aging Regime, J. Mater. Eng. Perform., 2022, 32, p 2932–2949. https://doi.org/10.1007/s11665-022-07314-1

    Article  CAS  Google Scholar 

  19. H. Stahl, G. Smith, and S. Wastiaux, Strain-Age Cracking of Alloy 601 Tubes at 600 °C, J. Fail. Anal. Prev., 2001, 1(1), p 51–54. https://doi.org/10.1007/s11668-006-5014-3

    Article  Google Scholar 

  20. K. Sourabh and J.B. Singh, Tensile Behavior of Alloy 690 in the Dynamic Strain Aging Regime, J. Mater. Eng. Perform., 2023, 32(7), p 2932–2949. https://doi.org/10.1007/s11665-022-07314-1

    Article  CAS  Google Scholar 

  21. H. Hänninen, H.P. Seifert, Y. Yagodzinskyy, U. Ehrnstén, O. Tarasenko, and P. Aaltonen, Effects of Dynamic Strain Aging on Environment-Assisted Cracking of Low Alloy Pressure Vessel and Pi** Steels, VTT Symp (Valtion Teknillinen Tutkimuskeskus), 2003, 227, p 199–221.

    Google Scholar 

  22. R.K. Singh and J.K. Sahu, Yield Strength Anomaly and Dynamic Strain Ageing Behavior of Recently Developed Advanced Ultra-Supercritical Boiler Grade Wrought Ni-Based Superalloy IN 740H, Mater. High Temp Taylor Francis, 2019, 36(3), p 220–231. https://doi.org/10.1080/09603409.2018.1513675

    Article  Google Scholar 

  23. R.K. Wilson, H.L. Flower, G.A.J. Hack, and S. Isobe, Nickel-Base Alloys for Severe Environments, Adv. Mater. Process., 1996, 149, p 19–23.

    CAS  Google Scholar 

  24. A.K. De, S. Vandeputte, and B.C. De Cooman, Static Strain Aging Behavior of Ultra Low Carbon Bake Hardening Steel, Scripta Mater., 1999, 41(8), p 831–837.

    Article  CAS  Google Scholar 

  25. T. Waterschoot, B.C. De Cooman, A.K. De, and S. Vandeputte, Static Strain Aging Phenomena in Cold-Rolled Dual-Phase Steels, Metall. Mater. Trans. A., 2003, 34(3), p 781–791.

    Article  Google Scholar 

  26. P.D. Zavattieri, V. Savic, L.G. Hector, J.R. Fekete, W. Tong, and Y. Xuan, Spatio-Temporal Characteristics of the Portevin–Le Châtelier Effect in Austenitic Steel with Twinning Induced Plasticity, Int. J. Plast., 2009, 25(12), p 2298–2330. https://doi.org/10.1016/j.ijplas.2009.02.008

    Article  CAS  Google Scholar 

  27. D.M. Field and D.C. Van Aken, Dynamic Strain Aging Phenomena and Tensile Response of Medium-Mn TRIP Steel, Metall. Mater. Trans. A., 2018, 49(4), p 1152–1166. https://doi.org/10.1007/s11661-018-4481-y

    Article  CAS  Google Scholar 

  28. J.Z. Chen, Q. Du, G.P. Zhang, and B. Zhang, Toward Eliminating Discontinuous Yielding Behavior of the Ea4t Steel, Materials, 2021, 14(20), p 6121.

    Article  CAS  Google Scholar 

  29. H. Aboulfadl, J. Deges, P. Choi, and D. Raabe, Dynamic Strain Aging Studied at the Atomic Scale, Acta Mater., 2015, 86, p 34–42. https://doi.org/10.1016/j.actamat.2014.12.028

    Article  CAS  Google Scholar 

  30. H. Buscail, S. Perrier, and C. Josse, Oxidation Mechanism of the Inconel 601 Alloy at High Temperatures, Mater. Corros., 2011, 62(5), p 416–422.

    Article  CAS  Google Scholar 

  31. K.B. Park, Y.T. Cho, and Y.G. Jung, Determination of Johnson-Cook Constitutive Equation for Inconel 601, J. Mech. Sci. Technol., 2018, 32(4), p 1569–1574. https://doi.org/10.1007/s12206-018-0311-9

    Article  Google Scholar 

  32. J.D. Wang and D. Gan, Effects of Grain Boundary Carbides on the Mechanical Properties of Inconel 600, Mater. Chem. Phys., 2001, 70(2), p 124–128. https://doi.org/10.1016/S0254-0584(00)00484-3

    Article  CAS  Google Scholar 

  33. J. Walmsley, J.Z. Albertsen, J. Friis, and R. Mathiesen, The Evolution and Oxidation of Carbides in an Alloy 601 Exposed to Long Term High Temperature Corrosion Conditions, Corros. Sci., 2010, 52, p 4001–4010.

    Article  CAS  Google Scholar 

  34. J.J. Kai, C.H. Tsai, T.A. Huang, and M.N. Liu, The Effects of Heat Treatment on the Sensitization and SCC Behavior of INCONEL 600 Alloy, Metall. Trans. A, 1989, 20(6), p 1077–1088. https://doi.org/10.1007/BF02650143

    Article  Google Scholar 

  35. S.H. Hong, H.Y. Kim, J.S. Jang, and I.H. Kuk, Dynamic Strain Aging Behavior of Inconel 600 Alloy, 2012, p 401–407.

  36. W.R. Cribb and R.E. Reed-Hill, Static Strain-Aging in Nickel 200 between 373 and 473 K, Metall. Trans. A, 1977, 8(1), p 71–76. https://doi.org/10.1007/BF02677266

    Article  Google Scholar 

Download references

Acknowledgment

Authors thank the Department of Metallurgical and Materials Engineering, NITK, and the Ministry of Human Resource Development, Government of India, for providing experimental facilities and financial support, respectively, for completing this work. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basavaraj Padasale.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Appendix 1: Recrystallization behavior of IN 601

Cold-reduction , %

Annealing temperature

0.4Tm , 380 °C

0.5Tm

, 543 °C

0.6Tm , 720 °C

0.7Tm , 880 °C

0.8Tm , 1025 °C

10

Strain aging

Strain aging

Recovery

Recovery

Recovery

20

Strain aging

Strain aging

Recovery

Recovery

Recovery

30

Strain aging

Strain aging

Recovery

Recovery

Partial-Recrystallization

40

Strain aging

Strain aging

Recovery

Partial-Recrystallization

Partial-Recrystallization

50

Strain aging

Strain aging

Recovery

Partial-Recrystallization

Recrystallization

60

Strain aging

Recovery

Recovery

Partial-Recrystallization

Recrystallization

70

Strain aging

Recovery

Recovery

Partial-Recrystallization

Recrystallization

80

Strain aging

Recovery

Recovery

Partial-Recrystallization

Recrystallization

Appendix 2: Hardness (HV) values for processed IN 601 sheet specimens

% Cold-reduction

Cold rolled at R.T

Annealing temperature for 1 h

0.4Tm, 380 °C

0.5Tm, 543 °C

0.6Tm, 720 °C

0.7Tm, 880 °C

0.8Tm, 1025 °C

10

272

281

367

338

235

221

20

318

331

380

360

278

204

30

332

365

385

377

299

209

40

376

430

422

384

229

210

50

409

433

428

388

233

204

60

431

459

476

416

242

205

70

439

487

483

310

252

202

80

486

521

495

351

253

209

Appendix 3: Tensile test values for processed IN 601 sheet specimens

Properties

30%

50%

70%

σyield, N/mm2

σmax, N/mm2

Ductility, %

σyield, N/mm2

σmax, N/mm2

Ductility, %

σyield, N/mm2

σmax, N/mm2

Ductility, %

0.18Tm, CR

816.4

836

9.99073

993.8

1002.0

6.81

1074.7

1086

4.8

0.4Tm

864.5

889

10.6

1052.0

1060.0

7.11

1193.1

1196

6.1

0.5Tm

795.4

874

13.7

978.3

1006.3

7.4

1037.5

1064

5.3

0.6Tm

470.5

687

21.4

302.8

642.1

33.2

403.8

690

27.7

0.7Tm

317.6

645

35.3

271.9

635.7

37.6

345.1

654

32.6

0.8Tm

150.2

454

46.4

148.7

523.7

42.8

141.4

501

41.7

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dsilva, P.C., Padasale, B., Vasavada, J. et al. Annealing Behavior of Cold-Rolled Inconel 601. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08681-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08681-z

Keywords

Navigation