Log in

Empirical Study on Thermomechanical Properties of 3D Printed Green, Renewable, and Sustainable Acrylonitrile Butadiene Styrene/Polylactic Acid Blended Parts

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Disposing of non-biodegradable conventional polymers such as polyethylene, polypropylene, polyvinyl chloride, and acrylonitrile-butadiene-styrene (ABS) is a severe environmental problem across the globe. ABS, a non-biodegradable polymer, is widely used for producing auto components, home appliances, electronic goods, etc., but it is not environment friendly. Therefore, there is a pressing need to develop biodegradable polymers as an alternative to non-biodegradable polymer materials. This paper aims to offer blended bio-based polylactic-acid (PLA) polymer with ABS for engineering applications to minimize the consumption of virgin petroleum-based ABS polymer. The effort is to ascertain the best-suited composition of ABS/PLA blended polymer with excellent thermal and mechanical properties. The five specimens of blended ABS/PLA polymers have been prepared using four compositions (80/20, 60/40, 40/60, and 20/80) using the material extrusion (MEX) 3D printing process and assessed for mechanical and thermal properties. The tensile strength and MFR of the ABS/PLA blend increased by 8.75 and 124.35%, respectively, with ABS/PLA polymers having a 20/80 wt.% composition. The thermal analysis of blends with varying blend compositions using DSC and FTIR have shown partial compatibility between ABS and PLA polymers. Furthermore, scanning electron microscopy (SEM) of tensile fractured specimens has been analyzed to support the evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Vinod, M.R. Sanjay, S. Suchart, and P. Jyotishkumar, Renewable and Sustainable Biobased Materials: An Assessment on Biofibers, Biofilms, Biopolymers and Biocomposites, J. Clean. Prod., 2020, 258, p 120978.

    Article  CAS  Google Scholar 

  2. S. Bano, N. Ramzan, T. Iqbal, H. Mahmood, and F. Saeed, Study of Thermal Degradation Behavior and Kinetics of ABS/PC Blend, Polish J. Chem. Technol., 2020, 22, p 64–69. https://doi.org/10.2478/pjct-2020-0029

    Article  CAS  Google Scholar 

  3. S. Bano, T. Iqbal, N. Ramzan, and U. Farooq, Study of Surface Mechanical Characteristics of Abs/Pc Blends Using Nanoindentation, Processes, 2021, 9, p 637. https://doi.org/10.3390/pr9040637

    Article  CAS  Google Scholar 

  4. Z. Ujfalusi, A. Pentek, R. Told, A. Schiffer, M. Nyitrai, and P. Maroti, Detailed Thermal Characterization of Acrylonitrile Butadiene Styrene and Polylactic Acid Based Carbon Composites Used in Additive Manufacturing, Polymers (Basel), 2020, 12, p 1–14.

    Article  Google Scholar 

  5. P. Kumar, P. Gupta, and I. Singh, Optimisation of Extrusion Process Parameters to Make ABS-PC Filament for 3D Printing Using Taguchi-GRA Technique, Adv. Mater. Process. Technol., 2023 https://doi.org/10.1080/2374068X.2023.2204458

    Article  Google Scholar 

  6. J. Kechagias, D. Chaidas, N. Vidakis, K. Salonitis, and N.M. Vaxevanidis, Key Parameters Controlling Surface Quality and Dimensional Accuracy: A Critical Review of FFF Process, Mater. Manuf. Process., 2022, 37, p 963–984. https://doi.org/10.1080/10426914.2022.2032144

    Article  CAS  Google Scholar 

  7. K. Yadav, S. Rohilla, A. Ali, M. Yadav, and D. Chhabra, Effect of Speed, Acceleration, and Jerk on Surface Roughness of FDM-Fabricated Parts, J. Mater. Eng. Perform., 2023 https://doi.org/10.1007/s11665-023-08476-2

    Article  Google Scholar 

  8. A.S. de León, A. Domínguez-Calvo, and S.I. Molina, Materials with Enhanced Adhesive Properties Based on Acrylonitrile-Butadiene-Styrene (ABS)/Thermoplastic Polyurethane (TPU) Blends for Fused Filament Fabrication (FFF), Mater. Des., 2019, 182, p 108044. https://doi.org/10.1016/j.matdes.2019.108044

    Article  CAS  Google Scholar 

  9. N. Vidakis, A. Maniadi, M. Petousis, M. Vamvakaki, G. Kenanakis, and E. Koudoumas, Mechanical and Electrical Properties Investigation of 3D-Printed Acrylonitrile–Butadiene–Styrene Graphene and Carbon Nanocomposites, J. Mater. Eng. Perform., 2020, 29, p 1909–1918. https://doi.org/10.1007/s11665-020-04689-x

    Article  CAS  Google Scholar 

  10. N. Vidakis, M. Petousis, A. Maniadi, E. Koudoumas, M. Liebscher, and L. Tzounis, Mechanical Properties of 3D-Printed Acrylonitrile-Butadiene-Styrene TiO2 and ATO Nanocomposites, Polymers (Basel), 2020, 12, p 1–16.

    Article  Google Scholar 

  11. R. Kumar, R. Singh, I.P.S. Ahuja, and M.S.J. Hashmi, Friction-Stir-Spot Welding of 3D Printed ABS and PA6 Composites: Flexural, Thermal and Morphological Investigations, Adv. Mater. Process. Technol., 2020 https://doi.org/10.1080/2374068X.2020.1835014

    Article  Google Scholar 

  12. P. Cheng, Y. Peng, K. Wang, A. Le Duigou, S. Yao, and C. Chen, Quasi-Static Penetration Property of 3D Printed Woven-like Ramie Fiber Reinforced Biocomposites, Compos. Struct., 2023, 303, p 116313. https://doi.org/10.1016/j.compstruct.2022.116313

    Article  CAS  Google Scholar 

  13. K. Wang, Y. Liu, J. Wang, J. **ang, S. Yao, and Y. Peng, On Crashworthiness Behaviors of 3D Printed Multi-Cell Filled Thin-Walled Structures, Eng. Struct., 2022, 254, p 113907. https://doi.org/10.1016/j.engstruct.2022.113907

    Article  Google Scholar 

  14. R. Kumar, R. Singh, I.P.S. Ahuja, and M.S.J. Hashmi, Processing Techniques of Polymeric Materials and Their Reinforced Composites, Adv. Mater. Process. Technol., 2020, 6, p 591–607. https://doi.org/10.1080/2374068X.2020.1728989

    Article  Google Scholar 

  15. X. Le, R. Akouri, A. Latassa, B. Passemato, and R. Wales, Mechanical Property Testing and Analysis of 3D Printing Objects, 2016.

  16. D. Yadav, D. Chhabra, R. Kumar Garg, A. Ahlawat, and A. Phogat, Optimization of FDM 3D Printing Process Parameters for Multi-Material Using Artificial Neural Network, Mater. Today: Proc., 2020, 21, p 1583–1591.

    Article  CAS  Google Scholar 

  17. J.M. Chacón, M.A. Caminero, E. García-Plaza, and P.J. Núñez, Additive Manufacturing of PLA Structures Using Fused Deposition Modelling: Effect of Process Parameters on Mechanical Properties and Their Optimal Selection, Mater. Des., 2017, 124, p 143–157.

    Article  Google Scholar 

  18. J.D. Kechagias, N. Vidakis, M. Petousis, and N. Mountakis, A Multi-Parametric Process Evaluation of the Mechanical Response of PLA in FFF 3D Printing, Mater. Manuf. Process., 2023, 38, p 941–953. https://doi.org/10.1080/10426914.2022.2089895

    Article  CAS  Google Scholar 

  19. N.A. Fountas, I. Papantoniou, J.D. Kechagias, D.E. Manolakos, and N.M. Vaxevanidis, Modeling and Optimization of Flexural Properties of FDM-Processed PET-G Specimens Using RSM and GWO Algorithm, Eng. Fail. Anal., 2022, 138, p 106340.

    Article  CAS  Google Scholar 

  20. J. Kechagias and D. Chaidas, Fused Filament Fabrication Parameter Adjustments for Sustainable 3D Printing, Mater. Manuf. Process., 2023, 38, p 933.

    Article  CAS  Google Scholar 

  21. D. Yadav, D. Chhabra, R.K. Gupta, A. Phogat, and A. Ahlawat, Modeling and Analysis of Significant Process Parameters of FDM 3D Printer Using ANFIS, Mater. Today Proc., 2020, 21, p 1592–1604. https://doi.org/10.1016/j.matpr.2019.11.227

    Article  CAS  Google Scholar 

  22. P. Kumar, P. Gupta, and I. Singh, Parametric Optimization of FDM Using the ANN- Based Whale Optimization Algorithm, Artif. Intell. Eng. Des. Anal. Manuf., 2022. https://doi.org/10.1017/S0890060422000142

    Article  Google Scholar 

  23. P. Kumar, P. Gupta, and I. Singh, Performance Analysis of Acrylonitrile–Butadiene–Styrene–Polycarbonate Polymer Blend Filament for Fused Deposition Modeling Printing Using Hybrid Artificial Intelligence Algorithms, J. Mater. Eng. Perform., 2023. https://doi.org/10.1007/s11665-022-07243-z

  24. M.L. Shofner, K. Lozano, and F.J. Rodrı, Nanofiber-Reinforced Polymers Prepared by Fused Deposition Modeling, J. Appl. Polym. Sci., 2002, 89, p 3081–3090.

    Article  Google Scholar 

  25. B. Kaygusuz and S. Özerinç, Improving the Ductility of Polylactic Acid Parts Produced by Fused Deposition Modeling through Polyhydroxyalkanoate Additions, J. Appl. Polym. Sci., 2019, 48154, p 1–8.

    Google Scholar 

  26. A.R. Prajapati, H.K. Dave, and H.K. Raval, An Experimental Study on Mechanical, Thermal and Flame-Retardant Properties of 3D-Printed Glass-Fiber-Reinforced Polymer Composites, J. Mater. Eng. Perform., 2021, 30, p 5266–5277. https://doi.org/10.1007/s11665-021-05731-2

    Article  CAS  Google Scholar 

  27. N. Vidakis, M. Petousis, and J.D. Kechagias, A Comprehensive Investigation of the 3D Printing Parameters’ Effects on the Mechanical Response of Polycarbonate in Fused Filament Fabrication, Prog. Addit. Manuf., 2022, 7, p 713–722. https://doi.org/10.1007/s40964-021-00258-3

    Article  Google Scholar 

  28. Pandey, P., Rapid Prototy** Technologies, Applications and Part Deposition Planning, Retrieved Oct., 2010.

  29. N. Yadav and R. Kumar, Study on Energy Harvesting from Low-Frequency Sinusoidal Vibrations Making Use of Diaphragm Type Piezoelectric Element, Mater, 2021 https://doi.org/10.56042/ijems.v28i3.38878

    Article  Google Scholar 

  30. N. Yadav and R. Kumar, Study on Piezoelectric Ceramic under Different Pressurization Conditions and Circuitry, J. Electroceramics, 2021, 2021, p 1–10.

  31. O.A. Mohamed, S.H. Masood, J.L. Bhowmik, M. Nikzad, and J. Azadmanjiri, Effect of Process Parameters on Dynamic Mechanical Performance of FDM PC/ABS Printed Parts Through Design of Experiment, J. Mater. Eng. Perform., 2016, 25, p 2922–2935.

    Article  CAS  Google Scholar 

  32. S. Gahletia, A. Kaushik, R.K. Garg, D. Chhabra, A. Kovács, R. Khargotra, and T. Singh, Fabrication and Analysis of Micro Carbon Fiber Filled Nylon Filament Reinforced with Kevlar, Fiberglass, and HSHT Fiberglass Using Dual Extrusion System, Mater. Today Commun., 2023, 35, p 106075.

    Article  CAS  Google Scholar 

  33. A. Kumar and D. Chhabra, Multidisciplinary Topology and Material Optimization Approach for Develo** Patient-Specific Limb Orthosis Using 3D Printing, Rapid Prototyp. J., 2023 https://doi.org/10.1108/RPJ-12-2022-0435

    Article  Google Scholar 

  34. A. Kumar and D. Chhabra, Parametric Topology Optimization Approach for Sustainable Development of Customized Orthotic Appliances Using Additive Manufacturing, Mech. Adv. Mater. Struct., 2023 https://doi.org/10.1080/15376494.2023.2214908

    Article  Google Scholar 

  35. R. Singh, R. Kumar, I. Farina, F. Colangelo, L. Feo, and F. Fraternali, Multi-Material Additive Manufacturing of Sustainable Innovative Materials and Structures, Polymers (Basel), 2019, 11, p 1–14.

    Article  Google Scholar 

  36. L.M. Robeson, Polymer Blends: A Comprehensive Review: Chapter 2. Fundamentals of Polymer Blends, Polym. Blends, 2007, 2007, p 11–23 http://books.google.com/books?id=fM7gbpFv9_0C&pgis=1.

  37. D. Ray, B.K. Sarkar, A.K. Rana, and N.R. Bose, The Mechanical Properties of Vinylester Resin Matrix Composites Reinforced with Alkali-Treated Jute Fibres, Compos. Part A Appl. Sci. Manuf., 2001, 32, p 119–127. https://doi.org/10.1016/S1359-835X(00)00101-9

    Article  CAS  Google Scholar 

  38. R. Vadori, M. Misra, and A.K. Mohanty, Sustainable Biobased Blends from the Reactive Extrusion of Polylactide and Acrylonitrile Butadiene Styrene, J. Appl. Polym. Sci., 2016, 133, p 1–10.

    Article  Google Scholar 

  39. Y. Li and H. Shimizu, Toughening of Polylactide by Melt Blending with a Biodegradable Poly(Ether)Urethane Elastomer, Macromol. Biosci., 2007, 7, p 921–928.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Additive Manufacturing Laboratory, sponsored by TEQIP-III and located in the Mechanical Engineering Department, as well as the Polymer Testing Laboratory, located in the Chemical Engineering Department, at Sant Longowal Institute of Engineering and Technology, Longowal, are acknowledged by the authors as being used for research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Kumar.

Ethics declarations

Conflict of interest

The authors mention that they have no conflicting agendas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Gupta, P. & Singh, I. Empirical Study on Thermomechanical Properties of 3D Printed Green, Renewable, and Sustainable Acrylonitrile Butadiene Styrene/Polylactic Acid Blended Parts. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08648-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08648-0

Keywords

Navigation