Log in

Sealing of Anodized AZ31B Magnesium Alloy in Lanthanum-Based Solution: Interplay Between Sealing Parameters, Surface Chemistry, and Corrosion Resistance

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present work, a La-based sealing procedure was developed for the anodized AZ31B magnesium alloy. The effects of sealing time and temperature on the electrochemical behavior of the samples were investigated. The corrosion resistance was evaluated in 3.5 wt.% NaCl solution using potentiodynamic polarization tests. Scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS) were used to examine the morphology and composition of the sealing films. The results were discussed based on the interplay between film composition, morphological aspects and surface roughness. The best corrosion resistance was obtained for the sample sealed for 20 minutes at 50 °C that exhibited the widest passive range, surpassing that of the anodized (unsealed) sample by more than three times. As indicated by the SEM and XPS results, the formation of a uniform sealed layer comprised of a mixture of La2O3 and La(OH)3 enhanced the corrosion resistance of the anodized AZ31B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, and L.G. Johansson, Fundamentals and Advances in Magnesium Alloy Corrosion, Prog. Mater. Sci., 2017, 89, p 92–193.

    Article  CAS  Google Scholar 

  2. S. Arthanari, A. Ananth, J.-H. Boo, and K.S. Shin, Protective Performance of Plasma-Enhanced Chemical Vapor-Deposited Ethyl Cyclohexane Coating on Magnesium Alloys, J. Mater. Eng. Perform., 2019, 28, p 1360–1372.

    Article  CAS  Google Scholar 

  3. D. Thirumalaikumarasmy, K. Shamugam, and V. Balasubramanian, Develo** an Empirical Relationship to Predict Corrosin Rate of AZ31B Magnesium Alloy under Sodium Chloride Environment, Trans. Indian Inst. Met., 2014, 67, p 19–32.

    Article  Google Scholar 

  4. M.G. Acharya and A.N. Shetty, The Corrosion Behavior of AZ31 Alloy in Chloride and Sulfate Media–A Comparative Study Through Electrochemical Investigations, J. Magnesium Alloys, 2019, 7, p 98–112.

    Article  CAS  Google Scholar 

  5. R. Yu, F. Cao, C. Zhao, J. Yao, J. Wang, Z. Wang, Z. Zou, D. Zheng, J. Cai, and G.-L. Song, The Marine Atmospheric Corrosion of Pure Mg and Mg Alloys in Field Exposure and Lab Simulation, Corros. Eng. Sci. Technol., 2020, 55, p 609–621.

    Article  CAS  Google Scholar 

  6. F. Morini, M. Bestetti, S. Franz, A. Vicenzo, A. Markov, and E. Yakolev, Surface Properties Modification of Magnesium Alloys by Low Energy High Current Pulsed Electron Beam, Surf. Coat. Technol., 2021, 420, p 127351.

    Article  CAS  Google Scholar 

  7. P. Prako, D. Rajanovic, M.L. Grilli, B.O. Postolnyi, V. Zemcenkovs, G. Rijkuris, and M. Lisnanskis, Promising Methods for Corrosion Protection of Magnesium Alloys in the Case of Mg-Al, Mg-Mn-Ce and Mg-Zn-Zr: A Recent Progress Review, Metals, 2021, 11, p 1133.

    Article  Google Scholar 

  8. A. Zaffora, F. Di Franco, D. Virtù, F.C. Pavia, G. Ghersi, S. Virtanen, and M. Santamaria, Tuning of the Mg alloy AZ31 Anodizing Process for Biodegradable Implants, ACS Appl. Mater. Interfaces, 2021, 13, p 12866–12876.

    Article  CAS  Google Scholar 

  9. S.M.H. Mousavian and S.H. Tabaian, The Effect of Anodizing Electrolyte Composition on Electrochemical Properties of Anodized Magnesium, Anti-Corros. Methods Mater., 2022, 69, p 194–203.

    Article  CAS  Google Scholar 

  10. X. Song, Y. Si, J. Liu, M. Li, and Z. **ong, Enhanced Corrosion Resistance of AZ91D Magnesium Alloy by Electric Field–Assisted Anodizing, Int. J. Electrochem. Sci., 2019, 14, p 8750–8759.

    Article  CAS  Google Scholar 

  11. Y. Liu, Z. Wei, F. Yang, and Z. Zhang, Environmental Friendly Anodizing of AZ91D Magnesium Alloy in Alkaline Borate-Benzoate Electrolyte, J. Alloys Compd., 2011, 509, p 6440–6446.

    Article  CAS  Google Scholar 

  12. W. Li, L. Zhu, and H. Liu, Effects of Silicate Concentration on Anodic Films Formed on AZ91D Magnesium Alloy in Solution Containing Silica sol, Surf. Coat. Technol., 2006, 201, p 2505–2511.

    Article  CAS  Google Scholar 

  13. D. Xue, Y. Yun, M.J. Schulz, and V. Shanov, Corrosion Protection of Biodegradable Magnesium Implants Using Anodization, Mater. Sci. Eng. C, 2011, 31, p 215–223.

    Article  CAS  Google Scholar 

  14. S. Pan, X. Tu, J. Yu, Y. Zhang, C. Miao, Y. Xu, R. Fu, and J. Li, Optimization of AZ31B Alloy Anodizing Process in NaOH-Na2SiO3-Na2B4O7 Environmental-Friendly Electrolyte, Coatings, 2022, 12, p 578.

    Article  CAS  Google Scholar 

  15. H. Fukuda and Y. Matsumoto, Effects of Na2SiO3 on Anodization of Mg-Al-Zn alloy in 3 M KOH Solution, Corros. Sci., 2004, 46, p 2135–2142.

    Article  CAS  Google Scholar 

  16. L.A. Oliveira, R.M.P. Silva, A.C.D. Rodas, R.M. Souto, and R.A. Antunes, Surface Chemistry, Film Morphology, Local Electrochemical Behavior and Cytotoxic Response of Anodized AZ31B Magnesium Alloy, J. Mater. Res. Technol., 2020, 9, p 14754–14770.

    Article  Google Scholar 

  17. C.L. Chu, X. Han, F. Xue, J. Bai, and P.K. Chu, Effects of Sealing Treatment on Corrosion Resistance and Degradation Behavior of Micro-arc Oxidized Magnesium Alloy Wires, Appl. Surf. Sci., 2013, 271, p 271–275.

    Article  CAS  Google Scholar 

  18. T. Lkhagvaa, Z.U. Rehman, and D. Choi, Post-Anodization Methods for Improved Anticorrosion Properties: A Review, J. Coat. Technol. Res., 2021, 18, p 1–17.

    Article  CAS  Google Scholar 

  19. M. Fedel, J. Franch, and S. Rossi, Effect of Thickness and Sealing Treatments on the Corrosion Protection Properties of Anodic Oxide Coatings on AA5005, Surf. Coat. Technol., 2021, 408, p 126761.

    Article  CAS  Google Scholar 

  20. G.-L. Song, An Irreversible Dip** Sealing Technique for Anodized ZE41 Mg Alloy, Surf. Coat. Technol., 2009, 203, p 3618–3625.

    Article  CAS  Google Scholar 

  21. B. Mingo, R. Arrabal, M. Mohedano, Y. Llmazares, E. Matykina, A. Yerokhin, and A. Pardo, Influence of Sealing Post-Treatments on the Corrosion Resistance of PEO Coated AZ91 Magnesium Alloy, Appl. Surf. Sci., 2018, 433, p 653–667.

    Article  CAS  Google Scholar 

  22. N. Van Phuong, B.R. Fazal, and S. Moon, Cerium- and Phosphate-Based Sealing Treatments of PEO coated AZ31 Mg Alloy, Surf. Coat. Technol., 2017, 309, p 86–95.

    Article  CAS  Google Scholar 

  23. M. Mohedano, C. Blawert, and M.L. Zheludkevich, Cerium-Based Sealing of PEO Coated AM50 Magnesium Alloy, Surf. Coat. Technol., 2016, 269, p 145–154.

    Article  Google Scholar 

  24. M. Laleh, F. Kargar, and A.S. Rouhghdam, Investigation of Rare Earth Sealing of Porous Micro-arc Oxidation Coating Formed on AZ91D Magnesium Alloy, J. Rare Earths, 2012, 30, p 1293–1297.

    Article  CAS  Google Scholar 

  25. T.S. Lim, H.S. Ryu, and S.-H. Hong, Plasma Electrolytic Oxidation/Cerium Conversion Composite Coatings for the Improved Corrosion Protection of AZ31 Mg Alloys, J. Electrochm. Soc., 2013, 160, p C77–C82.

    Article  CAS  Google Scholar 

  26. L. Pezzato, K. Brunelli, R. Babbolin, P. Dolcet, and M. Dabalà, Sealing of PEO Coated AZ91 Magnesium Alloy using La-Based Solutions, Int. J. Corros., 2017, 2017, p 5305218.

    Article  Google Scholar 

  27. D. Chen, R. Wang, Z. Huang, Y. Wu, Y. Zhang, G. Wu, D. Li, C. Guo, G. Jiang, S. Yu, D. Shen, and P. Nash, Evolution Processes of the Corrosion Behavior and Structural Characteristics of Plasma Electrolytic Oxidation Coatings on AZ31 Magnesium Alloy, Appl. Surf. Sci., 2018, 434, p 326–335.

    Article  CAS  Google Scholar 

  28. S.-Y. Jian, C.-Y. Yang, and J.-K. Chang, Robust Corrosion Resistance and Self-Healing Characteristics of a Novel Ce/Mn Conversion Coatings on EV31 Magnesium Alloys, Appl. Surf. Sci., 2020, 510, p 145385.

    Article  CAS  Google Scholar 

  29. S.-Y. Jian, Y.-C. Tzeng, M.-D. Ger, K.L. Chang, G.-N. Shi, W.-H. Huang, C.-Y. Chen, and C.-C. Wu, The Study of Corrosion Behavior of Manganese-based Conversion Coating on LZ91 Magnesium alloy: Effect of Addition of Pyrophosphate and Cerium, Mater. Des., 2020, 192, p 108707.

    Article  CAS  Google Scholar 

  30. L. Pezzato, R. Babbolin, P. Cerchier, M. Marigo, P. Dolcet, M. Dabalà, and K. Brunelli, Sealing of PEO Coated AZ91 Magnesium Alloy using Solutions Containing Neodymium, Corros. Sci., 2020, 173, p 108741.

    Article  CAS  Google Scholar 

  31. L. Telmenbayar, A.G. Ramu, T.-O. Erdenebat, and D. Choi, Anticorrosive Lanthanum Embedded PEO/GPTMS Coating on Magnesium Alloy by Plasma Electrolytic Oxidation with Silanization, Mater. Today Commun., 2022, 33, p 104662.

    Article  CAS  Google Scholar 

  32. Y.Q. Wang, M.Y. Zheng, and K. Wu, Microarc Oxidation Coating Formed on SiCw/AZ91 Magnesium Matrix Composite and its Corrosion Resistance, Mater. Lett., 2005, 59, p 1727–1731.

    Article  CAS  Google Scholar 

  33. Z. Li, X. **g, Y. Yuan, and M. Zhang, Composite Coatings on a Mg-Li Alloy Prepared by Combined Plasma Electrolytic Oxidation and Sol-gel Techniques, Corros. Sci., 2012, 63, p 358–366.

    Article  CAS  Google Scholar 

  34. Q. Wang, L. Tan, and K. Yang, Preparation and in Vitro Degradation Characterization of Si-Containing Coating on AZ31B Alloy, Mater. Technol., 2016, 31, p 828–835.

    Article  CAS  Google Scholar 

  35. Z.J. Li, Y. Yuan, and X.Y. **g, Comparison of Plasma Electrolytic Oxidation Coatings on Mg and Li Alloy Formed in Molybdate/Silicate and Aluminate/Silicate Composite Electrolytes, Mater. Corros., 2014, 65, p 493–501.

    Article  CAS  Google Scholar 

  36. G. Zhang, L. Wu, A. Tang, B. Weng, A. Atrens, S. Ma, L. Liu, and F. Pan, Sealing of Anodized Magnesium Alloy AZ31 with MgAl Layered Double Hydroxides Layers, RSC Adv., 2018, 8, p 2248.

    Article  CAS  Google Scholar 

  37. B. Han, Y. Yang, J. Li, H. Deng, and C. Yang, Effects of the Graphene Additive on the Corrosion Resistance of the Plasma Electrolytic Oxidation (PEO) Coating on the AZ91 Magnesium Alloy, Int. J. Electrochem. Sci., 2018, 13, p 9166–9182.

    Article  CAS  Google Scholar 

  38. NIST XPS DatabaseSearch Menu”; Available at: https://srdata.nist.gov/xps/main_search_menu.aspx Accessed 09/24/2022.

  39. J. Jayaraj, K.R. Rajesh, A.S. Raj, A. Srinivasan, S. Ananthakumar, K.G.N. Dhaipule, S.K. Kalphaty, U.T.S. Pillai, and U.K. Mudali, Investigation on the Corrosion Behavior of Lanthanium Phosphate Coatings on AZ31 Mg Alloy Obtained Through Chemical Conversion Technique, J. Alloys Compd., 2019, 784, p 1162–1174.

    Article  CAS  Google Scholar 

  40. J. Song, X. Cui, Z. Liu, G. **, E. Liu, D. Zhang, and Z. Gao, Advanced Microcapsules for Self-Healing Conversion Coating on Magnesium Alloy in Ce(NO3)3 Solution with Microcapsules Containing La(NO3)3, Surf. Coat. Technol., 2016, 307, p 500–505.

    Article  CAS  Google Scholar 

  41. M. Ely, J. Swiatowska, A. Seyeux, S. Zanna, and P. Marcus, Role of Post-Treatment in Improved Corrosion Behavior of Trivalente Chromium Protection (TCP) Coating Deposited on Aluminum Alloy 2024–T3, J. Electrochem. Soc., 2017, 164, p C276–C284.

    Article  CAS  Google Scholar 

  42. S. Ningshen, M. Sakairi, K. Suzuki, and S. Ukai, The Corrosion Resistance and Passive Film Compositions of 12%Cr and 15%Cr Oxide Dispersion Strengthened Steels in Nitric Acid Media, Corros. Sci., 2014, 78, p 322–334.

    Article  CAS  Google Scholar 

  43. M.F. Pillis, G.A. Geribola, G. Scheidt, E.G. de Araújo, M.C.L. Oliveira, and R.A. Antunes, Corrosion of Thin, Magnetron Sputtered Nb2O5 Films, Corros. Sci., 2016, 102, p 317–325.

    Article  CAS  Google Scholar 

  44. E. McCafferty, Introduction to Corrosion Science, Springer New York, New York, NY, 2010. https://doi.org/10.1007/978-1-4419-0455-3

    Book  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Experimental Multiuser Facilities (UFABC) for the experimental support. The Brazilian agency CAPES is acknowledged for the financial support (Finance code 001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mara Cristina Lopes de Oliveira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 4894 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, J.T.D., Okamoto, F., Masoumi, M. et al. Sealing of Anodized AZ31B Magnesium Alloy in Lanthanum-Based Solution: Interplay Between Sealing Parameters, Surface Chemistry, and Corrosion Resistance. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08521-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08521-0

Keywords

Navigation