Log in

Effect of Annealing on Microstructure and Mechanical Behavior of Cold Deformed Low-Density Multi-principal-Element High-Strength Alloys

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, the microstructure, and mechanical properties of cold-rolled low-density multi-principal-element Fe-30Mn-10Al-1.57C-2.3Cr-0.3Si-0.6Ti (wt.%) specimens were systematically investigated by annealing under different conditions. The microstructural evolution and strengthening mechanism were also examined. Results from x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electron backscatter diffraction (EBSD) analyses confirmed that carbides were composed of TiC and κ-carbides. As the annealing temperature increased, both the volume fraction of κ-carbides and yield strength (YS) of the alloys decreased. TEM images indicated a pile-up of dislocations around carbides and boundary of twins. The increase in annealing temperature to 450 °C led to best mechanical properties of specimens with σ0.2% = 1270.28 MPa, Rm = 1318.67 MPa, and ε = 19.47%. Moreover, YS decreased by 9.28% and TE increased by 192.78%. Notably, the density of the as-obtained alloy reached 6.58 g/cm3, a value 15.6% lower than that of conventional steel. In sum, these findings are promising for future applications of low-density alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared owing to the ongoing nature of our current project.

References

  1. M.Y.K. Hashimoto, K. Fujimura, T. Matsui, and K. Izumiya, Global CO2 Recycling-Novel Materials and Prospect for Prevent of Global Warming and Abundant Energy Supply, Mater. Sci. Eng. A A, 1999, 267, p 200–206.

    Article  Google Scholar 

  2. K. Kaygusuz, Energy and Environmental Issues Relating to Greenhouse Gas Emissions for Sustainable Development in Turkey, Renew. Sustain. Energy Rev., 2009, 13(1), p 253–270.

    Article  Google Scholar 

  3. M. Ritzkowski and R. Stegmann, Controlling Greenhouse Gas Emissions Through Landfill In Situ Aeration, Int. J. Greenh. Gas. Control, 2007, 1(3), p 281–288.

    Article  CAS  Google Scholar 

  4. G. Frommeyer and U. Brüx, Microstructures and Mechanical Properties of High-Strength Fe-Mn-AI-C Light-Weight TRIPLEX Steels, Steels Automot. Appl., 2006, 77, p 9–10.

    Google Scholar 

  5. S.S. Sohn, B.J. Lee, S. Lee, N.J. Kim, and J.H. Kwak, Effect of Annealing Temperature on Microstructural Modification and Tensile Properties in 0.35C-3.5Mn-5.8Al Lightweight Steel, Acta Mater., 2013, 61(13), p 5050–5066.

    Article  CAS  Google Scholar 

  6. K.G. Chin, H.J. Lee, J.H. Kwak, J.Y. Kang, and B.J. Lee, Thermodynamic Calculation on the Stability of (Fe, Mn)3AlC Carbide in High Aluminum Steels, J. Alloys Compd., 2010, 505(1), p 217–223.

    Article  CAS  Google Scholar 

  7. H.R. Ogden, R.I. Jaffee, and F.C. Holden, Structure and Properties of Ti-C Alloys, J. Metals, 1955, 203, p 73–80.

    Google Scholar 

  8. H. Kim, D.W. Suh, and N.J. Kim, Fe-Al-Mn-C Lightweight Structural Alloys: A Review on the Microstructures and Mechanical Properties, Sci. Technol. Adv. Mater., 2013, 14(1), p 014205.

    Article  CAS  Google Scholar 

  9. J. Moon, S.J. Park, J.H. Jang, T.H. Lee, C.H. Lee, H.U. Hong, H.N. Han, J. Lee, B.H. Lee, and C. Lee, Investigations of the Microstructure Evolution and Tensile Deformation Behavior of Austenitic Fe-Mn-Al-C Lightweight Steels and the Effect of Mo Addition, Acta Mater., 2018, 147, p 226–235.

    Article  CAS  Google Scholar 

  10. F. Wang, S. Wang, B. Chen, W. Ma, Q. **g, X. Zhang, M. Ma, Q. Wang, and R. Liu, Effect of Ti Addition on the Mechanical Properties and Microstructure of Novel Al-Rich Low-Density Multi-Principal-Element Alloys, J. Alloys Compd., 2022, 891, p 162028.

    Article  CAS  Google Scholar 

  11. F. Yang, R. Song, Y. Li, T. Sun, and K. Wang, Tensile Deformation of Low Density Duplex Fe-Mn-Al-C Steel, Mater. Des., 2015, 76, p 32–39.

    Article  CAS  Google Scholar 

  12. J. Herrmann, G. Inden, and G. Sauthoff, Deformation Behaviour of Iron-Rich Iron-Aluminum Alloys at Low Temperatures, Acta Mater., 2003, 51(10), p 2847–2857.

    Article  CAS  Google Scholar 

  13. C. Castan, F. Montheillet, and A. Perlade, Dynamic Recrystallization Mechanisms of an Fe-8% Al Low Density Steel Under Hot Rolling Conditions, Scripta Mater., 2013, 68(6), p 360–364.

    Article  CAS  Google Scholar 

  14. R. Rana, C. Liu, and R.K. Ray, Low-Density Low-Carbon Fe-Al Ferritic Steels, Scripta Mater., 2013, 68(6), p 354–359.

    Article  CAS  Google Scholar 

  15. A. Zargaran, H.S. Kim, J.H. Kwak, and N.J. Kim, Effects of Nb and C Additions on the Microstructure and Tensile Properties of Lightweight Ferritic Fe-8Al-5Mn Alloy, Scripta Mater., 2014, 89, p 37–40.

    Article  CAS  Google Scholar 

  16. S. Chen, R. Rana, A. Haldar, and R.K. Ray, Current State of Fe-Mn-Al-C Low Density Steels, Prog. Mater. Sci., 2017, 89, p 345–391.

    Article  CAS  Google Scholar 

  17. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-Dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater Sci., 2014, 60, p 130–207.

    Article  CAS  Google Scholar 

  18. K. Sato, K. Tagawa, and Y. Inoue, Modulated Structure and Magnetic Properties of Age-Hardenable Fe-Mn-Al-C alloys, Metall. Trans. A, 1990, 21, p 5–11.

    Article  Google Scholar 

  19. W. Song, W. Zhang, J. von Appen, R. Dronskowski, and W. Bleck, κ-Phase Formation in Fe-Mn-Al-C Austenitic Steels, Steel Res. Int., 2015, 86(10), p 1161–1169.

    Article  CAS  Google Scholar 

  20. G.R. Speich, V.A. Demares, and R.L. Miller, Formation of Austenite During Intercritical Annealing of Dual-Phase Steels, Metall. Mater. Trans. A., 1981, 12, p 1419–1428.

    Article  CAS  Google Scholar 

  21. S. Dutta, V. Ra**ikanth, A.K. Panda, A. Mitra, S. Chatterjee, and R.K. Roy, Effect of Annealing Treatment on Mechanical and Magnetic Softening Behaviors of Cold Rolled Interstitial-Free Steel, J. Mater. Eng. Perform., 2019, 28(4), p 2228–2236.

    Article  CAS  Google Scholar 

  22. S. Dutta, A.K. Panda, S. Chatterjee, and R.K. Roy, Effect of Annealing Treatment on Magnetic Texture of Cold Rolled ULC Steel, Mater. Lett., 2020, 276, p 128211.

    Article  CAS  Google Scholar 

  23. I. Gutierrez-Urrutia and D. Raabe, Multistage Strain Hardening Through Dislocation Substructure and Twinning in a High Strength and Ductile Weight-Reduced Fe-Mn-Al-C Steel, Acta Mater., 2012, 60(16), p 5791–5802.

    Article  CAS  Google Scholar 

  24. Z.H. Cai, H. Ding, R.D.K. Misra, and H. Kong, Unique Serrated Flow Dependence of Critical Stress in a Hot-Rolled Fe-Mn-Al-C Steel, Scripta. Mater., 2014, 71, p 5–8.

    Article  CAS  Google Scholar 

  25. Z. Dapeng, L. Yong, L. Feng, W. Yuren, Z. Liujie, and D. Yuhai, ODS Ferritic Steel Engineered with Bimodal Grain Size for High Strength and Ductility, Mater. Lett., 2011, 65(11), p 1672–1674.

    Article  Google Scholar 

  26. Z.H. Li, J.K. Ren, C. Wang, X. Wang, R.D. Misra, and G.D. Wang, Design of a Cold-Rolled Novel Advanced High-Strength Steel: An Analysis of Microstructural Evolution and Mechanical Properties, Mater. Charact., 2020, 163, p 110265.

    Article  CAS  Google Scholar 

  27. M. Liu, X. Li, Y. Zhang, C. Song, and Q. Zhai, Multiphase Precipitation and Its Strengthening Mechanism in a V-Containing Austenite-Based Low Density Steel, Intermetallics, 2021, 134, p 107179.

    Article  CAS  Google Scholar 

  28. B.J. Lee, J.S. Song, W.J. Moon, and S.I. Hong, Modifications of Partial-Dislocation-Induced Defects and Strength/Ductility Enhancement in Metastable High Entropy Alloys Through Nitrogen Do**, Mater. Sci. Eng. A., 2021, 803, p 140684.

    Article  CAS  Google Scholar 

  29. X. Ma, B. Langelier, B. Gault, and S. Subramanian, Effect of Nb Addition to Ti-Bearing Super Martensitic Stainless Steel on Control of Austenite Grain Size and Strengthening, Metall. Mater. Trans. A., 2017, 48(5), p 2460–2471.

    Article  CAS  Google Scholar 

  30. M.C. Ha, J.M. Koo, J.K. Lee, S.W. Hwang, and K.T. Park, Tensile Deformation of a Low Density Fe-27Mn-12Al-0.8C Duplex Steel in Association with Ordered Phases at Ambient Temperature, Mater. Sci. Eng. A, 2013, 586, p 276–283.

    Article  CAS  Google Scholar 

  31. J. Lee, H. Kim, S.J. Park, J. Moon, and H.N. Han, Correlation Between Macroscale Tensile Properties and Small-Scale Intrinsic Mechanical Behavior of Mo-Added Fe-Mn-Al-C Lightweight Steels, Mater. Sci. Eng. A., 2019, 768, p 138460.

    Article  CAS  Google Scholar 

  32. I. Gutierrez-Urrutia and D. Raabe, Influence of Al Content and Precipitation State on the Mechanical Behavior of Austenitic High-Mn Low-Density Steels, Scripta. Mater., 2013, 68(6), p 343–347.

    Article  CAS  Google Scholar 

  33. R.B. Figueiredo and T.G. Langdon, Deformation Mechanisms in Ultrafine-Grained Metals with an Emphasis on the Hall-Petch Relationship and Strain Rate Sensitivity, J. Market. Res., 2021, 14, p 137–159.

    CAS  Google Scholar 

  34. L. Zhang and Y. Shibuta, Inverse Hall-Petch Relationship of High-Entropy Alloy by Atomistic Simulation, Mater. Lett., 2020, 274, p 128024.

    Article  CAS  Google Scholar 

  35. Y. Chong, G. Deng, S. Gao, J. Yi, A. Shibata, and N. Tsuji, Yielding Nature and Hall-Petch Relationships in Ti-6Al-4V Alloy with Fully Equiaxed and Bimodal Microstructures, Scripta. Mater., 2019, 172, p 77–82.

    Article  CAS  Google Scholar 

  36. M.Y. Seok, I.C. Choi, J. Moon, S. Kim, U. Ramamurty, and J.I. Jang, Estimation of the Hall-Petch Strengthening Coefficient of Steels Through Nanoindentation, Scripta. Mater., 2014, 87, p 49–52.

    Article  CAS  Google Scholar 

  37. M. Sauzay, B. Fournier, M. Mottot, A. Pineau and I. Monnet, Cyclic Softening of Martensitic Steels at High Temperature—Experiments and Physically Based Modelling, Mater. Sci. Eng. A, 2008, 483484, p 410414.

    Google Scholar 

  38. T. Ungár, A.D. Stoica, G. Tichy, and X.L. Wang, Orientation-Dependent Evolution of the Dislocation Density in Grain Populations with Different Crystallographic Orientations Relative to the Tensile Axis in a Polycrystalline Aggregate of Stainless Steel, Acta Mater., 2014, 66, p 251–261.

    Article  Google Scholar 

  39. S. Lee, Y. Estrin, and B.C. De Cooman, Constitutive Modeling of the Mechanical Properties of V-Added Medium Manganese TRIP Steel, Metall. Mater. Trans. A., 2013, 44(7), p 3136–3146.

    Article  CAS  Google Scholar 

  40. C.H. Nathan, Mechanical and Materials for Design, McGrow-Hill Book Company, New York, 1984.

    Google Scholar 

  41. H. Wen, T.D. Top**, D. Isheim, D.N. Seidman, and E.J. Lavernia, Strengthening Mechanisms in a High-Strength Bulk Nanostructured Cu-Zn-Al Alloy Processed via Cryomilling and Spark Plasma Sintering, Acta Mater., 2013, 61(8), p 2769–2782.

    Article  CAS  Google Scholar 

  42. D. Lee, J.K. Kim, S. Lee, K. Lee, and B.C. De Cooman, Microstructures and Mechanical Properties of Ti and Mo Micro-Alloyed Medium Mn Steel, Mater. Sci. Eng. A, 2017, 706, p 1–14.

    Article  CAS  Google Scholar 

  43. K. Ma, H. Wen, T. Hu, T.D. Top**, D. Isheim, D.N. Seidman, E.J. Lavernia, and J.M. Schoenung, Mechanical Behavior and Strengthening Mechanisms in Ultrafine Grain Precipitation-Strengthened Aluminum Alloy, Acta Mater., 2014, 62, p p141-155.

    Article  Google Scholar 

  44. C.W. Kim, M. Terner, J.H. Lee, H.U. Hong, J. Moon, S.J. Park, J.H. Jang, C.H. Lee, B.H. Lee, and Y.J. Lee, Partitioning of C into κ-Carbides by Si Addition and Its Effect on the Initial Deformation Mechanism of Fe-Mn-Al-C Lightweight Steels, J. Alloys Compd., 2019, 775, p p554-564.

    Article  Google Scholar 

  45. M.D. Mulholland and D.N. Seidman, Nanoscale Co-Precipitation and Mechanical Properties of a High-Strength Low-Carbon Steel, Acta Mater., 2011, 59(5), p 1881–1897.

    Article  CAS  Google Scholar 

  46. L. Bartlett, R.A. Howell, A. Schulta, D. VanAken, and K. Peaslee, A Review of the Physical and Mechanical Properties of a Cast High Strength and Lightweight Fe-Mn-Al-C Steel, Proc. Mater. Sci. Technol. Conf. Exhib., 2010, 3, p 1941–1953.

    Google Scholar 

  47. M. Liu, X. Li, Y. Zhang et al., Multiphase Precipitation and Its Strengthening Mechanism in a V-Containing Austenite-Based Low-Density Steel, Intermetallics, 2021, 134, p 107179.

    Article  CAS  Google Scholar 

  48. T. Gladman, The Physical Metallurgy of Microalloyed Steels, (2002)

  49. Y. Li, Y. Lu, W. Li, M. Khedr, H. Liu, and X. **, Hierarchical Microstructure Design of a Bimodal Grained Twinning-Induced Plasticity Steel with Excellent Cryogenic Mechanical Properties, Acta Mater., 2018, 158, p 79–94.

    Article  CAS  Google Scholar 

  50. H. Song, J. Yoo, S.-H. Kim, S.S. Sohn, M. Koo, N.J. Kim, and S. Lee, Novel Ultra-High-Strength Cu-Containing Medium-Mn Duplex Lightweight Steels, Acta Mater., 2017, 135, p 215–225.

    Article  CAS  Google Scholar 

  51. Z.G. Liu, X.H. Gao, M. **ong, P. Li, R.D. Misra, D.Y. Rao, and Y.C. Wang, Role of Hot Rolling Procedure and Solution Treatment Process on Microstructure, Strength and Cryogenic Toughness of High Manganese Austenitic Steel, Mater. Sci. Eng. A., 2021, 807, p 140881.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National major research instrument development project (Grant No. 52127808). The authors would like to thank Dr. B.H. Chen, Dr. P.F. Ji, and Dr. B. Li for help and guidance with writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., An, Z.L., Qian, Z.Z. et al. Effect of Annealing on Microstructure and Mechanical Behavior of Cold Deformed Low-Density Multi-principal-Element High-Strength Alloys. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08465-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08465-5

Keywords

Navigation