Log in

The Thermal Conductivity, Thermal Diffusion, Thermal Expansion, and Mechanical Properties of Mg-2Nd-4Zn Alloys Subjected to Aging Treatment

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of T4 and T6 treatment on the microstructures, precipitates, thermal expansion and thermal conductivity properties of Mg-2Nd-4Zn alloys was systemically investigated. The number of NdZn2 phase increased subjected to T6 treatment. The coherent relationship between the NdZn2 phase and Mg matrix was observed in the Mg-2Nd-4Zn alloys, which plays a great influence on improving the thermal expansion, thermal conductivity and mechanical properties of Mg-2Nd-4Zn alloys. The decrease in the coefficient of thermal expansion (CTE) and the thermal conductivity of Mg alloys were ascribed to the existence of solute atoms in alloys after the T4 treatment. It was also found that the T6-treated alloy has smaller area of the hysteresis loop, which has better thermal stability. Therefore, the high performance was mainly due to T6 treatment, the thermal conductivity of T6-treated Mg-2Nd-4Zn alloy is 124.4 K·m−1·K−1 at room temperature, and TYS of 235.5 MPa, CYS of 393.7 MPa, elongation of tension and compression are 31 and 27%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. E.C. Zuo, X.L. Dou, Y.Y. Chen, W.J. Zhu, G. Jiang, A.J. Mao, and J.G. Du, Electronic Work Function, Surface Energy and Electronic Properties of Binary Mg-Y and Mg-Al Alloys: A DFT Study, Surf. Sci., 2021, 712, p 121880. https://doi.org/10.1016/j.susc.2021.121880

    Article  CAS  Google Scholar 

  2. M. Wang, H.L. Yu, Y. Chen, and M.X. Huang, Machine Learning Assisted Screening of Non-Rare-Earth Elements for Mg Alloys with Low Stacking Fault Energy, Comput. Mater. Sci., 2021, 196, p 110544. https://doi.org/10.1016/j.commatsci.2021.110544

    Article  CAS  Google Scholar 

  3. Z.Y. Zhao, R.G. Guan, Y.F. Shen, and P.K. Bai, Grain Refinement Mechanism of Mg-3Sn-1Mn-1La Alloy during Accumulative Hot Rolling, J. Mater. Sci. Technol., 2021, 91, p 251–261. https://doi.org/10.1016/j.jmst.2021.02.052

    Article  CAS  Google Scholar 

  4. M. Yamasaki and Y. Kawamura, Thermal Diffusivity and Thermal Conductivity of Mg-Zn-Rare Earth Element Alloys with Long-Period Stacking Ordered Phase, Scr. Mater., 2009, 60, p 264–267. https://doi.org/10.1016/j.scriptamat.2008.10.022

    Article  CAS  Google Scholar 

  5. H.C. Pan, F.S. Pan, R.M. Yang, J. Peng, C.Y. Zhao, J. She, Z.Y. Gao, and A.T. Tang, Thermal and Electrical Conductivity of Binary Magnesium Alloys, J. Mater. Sci., 2014, 49, p 3107–3124. https://doi.org/10.1007/s10853-013-8012-3

    Article  CAS  Google Scholar 

  6. Y. Meng, J. Sun, L.G. Cao, Y. Yang, H.T. Zhang, and J.Z. Cui, Effect of Al on Expansion Behavior of Mg-Al Alloys during Solidification, Acta Metall. Sin. (Engl. Lett.), 2019, 32, p 559–565. https://doi.org/10.1007/s40195-018-0780-y

    Article  CAS  Google Scholar 

  7. B.C. Li, L.G. Hou, R.Z. Wu, J.H. Zhang, X.X. Li, M.L. Zhang, A.P. Dong, and B.D. Sun, Microstructure and Thermal Conductivity of Mg-2Zn-Zr Alloy, J. Alloys Compd., 2017, 722, p 772–777. https://doi.org/10.1016/j.jallcom.2017.06.148

    Article  CAS  Google Scholar 

  8. X. Peng, W.C. Liu, G.H. Wu, H. Ji, and W.J. Ding, Plastic Deformation and Heat Treatment of Mg-Li Alloys: A Review, J. Mater. Sci. Technol., 2022, 99, p 193–206. https://doi.org/10.1016/j.jmst.2021.04.072

    Article  CAS  Google Scholar 

  9. L.P. Zhong, Y.J. Wang, M. Gong, X.W. Zheng, and J. Peng, Effects of Precipitates and its Interface on Thermal Conductivity of Mg-12Gd Alloy during Aging Treatment, Mater. Charact., 2018, 138, p 284–288. https://doi.org/10.1016/j.matchar.2018.02.019

    Article  CAS  Google Scholar 

  10. M. Rajabi, R.M. Sedighi, and S.M. Rabiee, Thermal Stability of Nanocrystalline Mg-Based Alloys Prepared via Mechanical Alloying, Trans. Nonferrous Met. Soc. China, 2016, 26, p 398–405. https://doi.org/10.1016/S1003-6326(16)64128-6

    Article  CAS  Google Scholar 

  11. T. Guo, S.S. Wu, X. Zhou, S.L. Lü, and L.Q. **a, Effects of Si Content and Ca Modification on Microstructure and Thermal Expansion Property of Mg-Si Alloys, Mater. Chem. Phys., 2020, 253, p 123260. https://doi.org/10.1016/j.matchemphys.2020.123260

    Article  CAS  Google Scholar 

  12. K.Y. Chen and K.P. Boyle, Elastic Properties, Thermal Expansion Coefficient, and Electronic Structures of Mg and Mg-Based Alloys, Metall. Trans. A, 2009, 11, p 2571–2760. https://doi.org/10.1007/s11661-009-9954-6

    Article  CAS  Google Scholar 

  13. Y.H. Li, K. Li, J. Dai, W.D. Han, W.L. Yin, Y.F. Li, and H. Zhi, Effect of Nano Rare Earth Phase on Microstructure and Properties in Rapidly Solidifying Mg-Si-RE Alloys, Mater. Today Commun., 2021, 27, p 102344. https://doi.org/10.1016/j.mtcomm.2021.102344

    Article  CAS  Google Scholar 

  14. G.L.D. Gouveia, A. Garcia, and J.E. Spinelli, Towards a Morphological Control of Mg2Si and Superior Tensile Properties of High-Zn Mg-0.6Si (−Zn) Alloys, Mater. Lett., 2021, 299, p 130084. https://doi.org/10.1016/j.matlet.2021.130084

    Article  CAS  Google Scholar 

  15. X.J. Wang, Z.N. Chen, E.Y. Guo, X.Q. Liu, H.J. Kang, and T.M. Wang, The Role of Ga in the Microstructure, Corrosion Behavior and Mechanical Properties of As-Extruded Mg-5Sn-xGa Alloys, J. Alloys Compd., 2021, 863, p 158762. https://doi.org/10.1016/j.jallcom.2021.158762

    Article  CAS  Google Scholar 

  16. H.J. Deng, Y. Yang, M.M. Li, X.M. **ong, G.B. Wei, W.D. **e, B. Jiang, X.D. Peng, and F.S. Pan, Effect of Mn Content on the Microstructure and Mechanical Properties of Mg-6Li-4Zn-xMn Alloys, Prog. Nat. Sci. Mater. Int., 2021, 31, p 583–590. https://doi.org/10.1016/j.pnsc.2021.06.001

    Article  CAS  Google Scholar 

  17. Y.L. Xu, S.W. Wang, Y.Y. Wang, L. Chen, L.X. Yang, L. **ao, L. Yang, and N. Hort, Mechanical Behaviors of Extruded Mg Alloys with High Gd and Nd Content, Prog. Nat. Sci. Mater. Int., 2021, 31, p 591–598. https://doi.org/10.1016/j.pnsc.2021.06.005

    Article  CAS  Google Scholar 

  18. G.K. Meenashisundaram, T.H.D. Ong, G. Parande, V. Manakari, S.L. **ang, and M. Gupta, Using Lanthanum to Enhance the Overall Ignition, Hardness, Tensile and Compressive Strengths of Mg-0.5Zr Alloy, J. Rare Earths, 2017, 35, p 723–732. https://doi.org/10.1016/S1002-0721(17)60969-4

    Article  Google Scholar 

  19. Y.F. Liu, X.G. Qiao, Z.T. Li, Z.H. **a, and M.Y. Zheng, Effect of Nano-Precipitation on Thermal Conductivity and Mechanical Properties of Mg-2Mn-xLa Alloys during Hot Extrusion, J. Alloys Compd., 2020, 830, p 154570. https://doi.org/10.1016/j.jallcom.2020.154570

    Article  CAS  Google Scholar 

  20. X.S. Huang, M.Z. Bian, I. Nakatsugawa, Y. Chino, M. Sato, K. Yamazaki, F. Kido, H. Ueda, and M. Inoue, Simultaneously Achieving Excellent Mechanical Properties and High Thermal Conductivity in a High Mn-Containing Mg-Zn-Ca-Al-Mn Sheet Alloy, J. Alloys Compd., 2021, 887, p 161394. https://doi.org/10.1016/j.jallcom.2021.161394

    Article  CAS  Google Scholar 

  21. X. Du, W.B. Du, Z.H. Wang, K. Liu, and S.B. Li, Simultaneously Improved Mechanical and Thermal Properties of Mg-Zn-Zr Alloy Reinforced by Ultra-Low Content of Graphene Nanoplatelets, Appl. Surf. Sci., 2021, 536, p 147791. https://doi.org/10.1016/j.apsusc.2020.147791

    Article  CAS  Google Scholar 

  22. V.E. Bazhenov, A.V. Koltygin, M.C. Sung, S.H. Park, Yu.V. Tselovalnik, A.A. Stepashkin, A.A. Rizhsky, M.V. Belov, V.D. Belov, and K.V. Malyutin, Development of Mg-Zn-Y-Zr Casting Magnesium Alloy with High Thermal Conductivity, J. Magnes. Alloys, 2021, 9, p 1567–1577. https://doi.org/10.1016/j.jma.2020.11.020

    Article  CAS  Google Scholar 

  23. S. Wang, Y.H. Zhao, H.J. Guo, F.F. Lan, and H. Hou, Mechanical and Thermal Conductivity Properties of Enhanced Phases in Mg-Zn-Zr System from First Principles, Materials, 2018, 11, p 2010. https://doi.org/10.3390/ma11102010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. N.N. Dong, J.H. Wang, H.B. Ma, and P.P. **, Effects of Nd Content on Thermal Expansion Behavior of Mg-Nd Alloys, Mater. Today Commun., 2021, 29, p 102894. https://doi.org/10.1016/j.mtcomm.2021.102894

    Article  CAS  Google Scholar 

  25. M. Yamasaki and Y. Kawamura, Thermal Diffusivity and Thermal Conductivity of Mg-Zn-Rare Earth Element Alloys with Long-Period Stacking Ordered Phase, Scr. Mater., 2009, 60, p 264–267. https://doi.org/10.1016/j.scriptamat.2008.10.022

    Article  CAS  Google Scholar 

  26. G.Q. Li, J.H. Zhang, R.Z. Wu, Y. Feng, S.J. Liu, X.J. Wang, Y.F. Jiao, Q. Yang, and J. Meng, Development of High Mechanical Properties and Moderate Thermal Conductivity Cast Mg Alloy with Multiple RE via Heat Treatment, J. Mater. Sci. Technol., 2018, 34, p 1076–1084. https://doi.org/10.1016/j.jmst.2017.12.011

    Article  CAS  Google Scholar 

  27. J.W. Yuan, K. Zhang, T. Li, X.G. Li, Y.J. Li, M.L. Ma, P. Luo, G.Q. Luo, and Y.H. Hao, Anisotropy of Thermal Conductivity and Mechanical Properties in Mg-5Zn-1Mn alloy, Mater. Des., 2012, 40, p 257–261. https://doi.org/10.1016/j.matdes.2012.03.046

    Article  CAS  Google Scholar 

  28. A. Rudajevova, F.V. Buch, and B.L. Mordike, Thermal Diffusivity and Thermal Conductivity of MgSc Alloys, J. Alloys Compd., 1999, 292, p 27–30. https://doi.org/10.1016/S0925-8388(99)00444-2

    Article  CAS  Google Scholar 

  29. S. Lee, S.Y. Kwon, H.J. Ham, C.M. Suh, and S.W. Kim, Thermal Conductivity of Magnesium Alloys in the Temperature Range from −125 to 400 °C, Int. J. Thermophys., 2013, 34, p 2343–2350. https://doi.org/10.1007/s10765-011-1145-1

    Article  CAS  Google Scholar 

  30. C.J. Chen, Q.D. Wang, and D.D. Yina, Thermal Properties of Mg-11Y-5Gd-2Zn-0.5Zr (wt.%) Alloy, J. Alloys Compd., 2009, 487, p 560–563. https://doi.org/10.1016/j.jallcom.2009.07.177

    Article  CAS  Google Scholar 

  31. L.P. Zhong, J. Peng, S. Sun, Y.J. Wang, Y. Lu, and F.S. Pan, Microstructure and Thermal Conductivity of as-Cast and as-Solutionized Mg-Rare Earth Binary Alloys, J. Mater. Sci. Technol., 2017, 33, p 1240–1248. https://doi.org/10.1016/j.jmst.2016.08.026

    Article  CAS  Google Scholar 

  32. A. Rudajevova, S. KuÂdela, and M. StaneÏk, Thermal Properties of Mg-Li and Mg-Li-Al Alloys, Mater. Sci. Technol., 2003, 19, p 1097. https://doi.org/10.1179/026708303225004648

    Article  CAS  Google Scholar 

  33. H. Pan, Investigations on Thermal Conductivity of Magnesium Alloys, Chongqing University, Chongqing, 2013.

    Google Scholar 

  34. F. Shi, C.Q. Wang, and X.F. Guo, Microstructures and Properties of As-Cast Mg92Zn4Y4 and Mg92Zn4Y3Gd1 Alloys with LPSO Phase, Rare. Metal. Mater. Eng., 2015, 44, p 1617–1622. https://doi.org/10.1016/S1875-5372(15)30103-X

    Article  CAS  Google Scholar 

  35. X.Q. Liu, Y.J. Wu, Z.L. Liu, C. Lu, H.J. **e, and J. Li, Thermal and Electrical Conductivity of As-Cast Mg-4Y-xZn Alloys, Mater. Res. Express, 2018, 5, p 066532. https://doi.org/10.1088/2053-1591/aac99b

    Article  CAS  Google Scholar 

  36. Y. Ming, G.Q. You, X.X. Xu, H.Y. Wen, and J.H. Zhao, Effect of Thickness on the Thermal Conductivity and Microstructure of Die-Cast AZ91D Magnesium Alloy, Metall. Mater. Trans. A., 2019, 50, p 5969–5976. https://doi.org/10.1007/s11661-019-05473-w

    Article  CAS  Google Scholar 

  37. A. Rudajevova, M. Stanek, and P. Lukac, Determination of Thermal Diffusivity and Thermal Conductivity of Mg-Al Alloys, Mater. Sci. Eng. A, 2003, 341, p 152–157. https://doi.org/10.1016/S0921-5093(02)00233-2

    Article  Google Scholar 

  38. A. Rudajevova and P. Lukac, Comparison of the Thermal Properties of AM20 and AS21 Magnesium Alloys, Mater. Sci. Eng. A, 2005, 397, p 16–21. https://doi.org/10.1016/j.msea.2004.12.036

    Article  CAS  Google Scholar 

  39. J.W. Yuan, K. Zhang, X.H. Zhang, X.G. Li, T. Li, Y.J. Li, M.L. Ma, and G.L. Shi, Thermal Characteristics of Mg-Zn-Mn Alloys with High Specific Strength and High Thermal Conductivity, J. Alloys Compd., 2013, 578, p 32–36. https://doi.org/10.1016/j.jallcom.2013.03.184

    Article  CAS  Google Scholar 

  40. P.S. Turner, Thermal-Expansion Stresses in Reinforced Plastics, Mod. Plast., 1946, 24, p 153.

    Google Scholar 

  41. E.H. Kerner, The Elastic and Thermo-Elastic Properties of Composite Media, Proc. Phys. Soc. B, 1956, 69, p 808.

    Article  Google Scholar 

  42. R.A. Schapery, Thermal Expansion Coefficients of Composite Materials Based on Energy Principles, J. Compos. Mater., 1968, 2, p 380.

    Article  Google Scholar 

  43. X.H. Chen, X.W. Huang, F.S. Pan, A.T. Tang, J.F. Wang, and D.F. Zhang, Effects of Heat Treatment on Microstructure and Mechanical Properties of ZK60 Mg Alloy, Trans. Nonferrous Met. Soc. China, 2011, 21, p 754–760. https://doi.org/10.1016/S1003-6326(11)60776-0

    Article  CAS  Google Scholar 

  44. W.J. Parker, R.J. Jenkins, and C.P. Butler, Flash Method of Determining Thermal Diffusivity, Heat Capacity and Thermal Conductivity, J. Appl. Phys., 1961, 32, p 1679–1684. https://doi.org/10.1063/1.1728417

    Article  CAS  Google Scholar 

  45. S.B. Li, X.Y. Yang, J.T. Hou, and W.B. Du, A Review on Thermal Conductivity of Magnesium and its Alloys, J. Magnes. Alloys, 2020, 8, p 78–90. https://doi.org/10.1016/j.jma.2019.08.002

    Article  CAS  Google Scholar 

  46. A. Kumar, G.K. Meenashisundaram, V. Manakari, G. Parande, and M. Gupta, Lanthanum Effect on Improving CTE, Dam**, Hardness and Tensile Response of Mg-3Al Alloy, J. Alloys Compd., 2017, 695, p 3612–3620. https://doi.org/10.1016/j.jallcom.2016.11.400

    Article  CAS  Google Scholar 

  47. B. Ckp, Elastic Properties, Thermal Expansion Coefficients, and Electronic Structures of Mg and Mg-Based Alloys, Metall. Mater. Trans. A, 2009, 40, p 2751–2760. https://doi.org/10.1007/s11661-009-9954-6

    Article  CAS  Google Scholar 

  48. C.J. Chen, Q.D. Wang, and D.D. Yin, Thermal Properties of Mg-11Y-5Ga-2Zn-0.5Zr (wt.%) Alloy, J. Alloys Compd., 2009, 487, p 560–563. https://doi.org/10.1016/j.jallcom.2009.07.177

    Article  CAS  Google Scholar 

  49. B.L. Zou, X.Z. Fan, L.J. Gu, C.J. Wang, Y. Wang, W.Z. Huang, L. Zhu, and X.Q. Cao, Investigation of the Bond Coats for Thermal Barrier Coatings on Mg Alloy, Appl. Surf. Sci., 2013, 265, p 264–273. https://doi.org/10.1016/j.apsusc.2012.10.192

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the financial support of Enterprise Research Transformation and Industrialization Project—Post Subsidy—High-tech Division Program (2023-ZJ-730) to carry out this research work.

Author information

Authors and Affiliations

Authors

Contributions

ND was contributed to concepts, investigation, experiments, writing—manuscripts; HM was contributed to concepts, investigation, methods, experiments, supervision, writing, editing and revision; JW was contributed to investigation, methods; CJ was contributed to investigation, methods; HJ was contributed to experiments, methods; PJ was contributed to concepts, methods and investigation.

Corresponding authors

Correspondence to Hongbin Ma or Peipeng **.

Ethics declarations

Competing interests

None of the submitted work has been published or is under consideration for publication elsewhere. The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, N., Ma, H., **, C. et al. The Thermal Conductivity, Thermal Diffusion, Thermal Expansion, and Mechanical Properties of Mg-2Nd-4Zn Alloys Subjected to Aging Treatment. J. of Materi Eng and Perform 33, 5168–5182 (2024). https://doi.org/10.1007/s11665-023-08297-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08297-3

Keywords

Navigation