Log in

Process-Controlled Domain Switching and Improved Ferroelectric Properties in Lanthanum-Modified Lead Zirconate Titanate Films

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present study, the effect of processing parameters like annealing temperature, excess of lead (Pb) content, and film thickness on the crystallographic orientation, dielectric and ferroelectric properties of PLZT (Pb/La/Zr/Ti: 92/8/52/48) films are investigated. For the investigation, PLZT films were prepared on Pt/Ti/SiO2/Si substrate by chemical solution deposition method and annealed at different temperatures (600, 625, 650, 675, and 700 °C). Diverse growth orientation was observed for different annealing temperatures that gave rise to modified electrical properties in the PLZT films. Comparative studies on processing temperature exhibited improved ferroelectric properties in 650 °C annealed PLZT film, which is attributed to its crystallinity (Full width at half maximum, FWHM101 = 0.49°) and texture coefficient (γ = 0.832). Excess Pb content (3 wt.%) yielded improved ferroelectric properties in PLZT film with a ~ 10% increment in domain switching. The PLZT film with 3 wt.% Pb-excess content showed an ASTM class 5B adhesion on Pt/Ti/SiO2/Si substrate, a nano-hardness value of 7894.43 MPa, and a Young’s modulus value of 143.05 GPa. To further study the effect of process control parameters on PLZT film, variation of thicknesses (492, 768, and 1500 nm) was studied for 3 wt.% Pb-excess film. The study showed considerable domain switching (switching current = 58.10 μA at 40 kV/cm), improved dielectric constant (~ 2750), higher polarization (Pmax = 71.4 μC/cm2) at a low electric field 334 kV/cm and low leakage current for 1500 nm thick PLZT film. A total energy storage density of ~ 26 J/cm3 at 1020 kV/cm and tunability of 68.46% at ~ 200 kV/cm was achieved for PLZT film with 3 wt.% excess Pb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C. Huang et al., Large Quadratic Electro-Optic Effect of the PLZT Thin Films for Optical Communication Integrated Devices, ACS Photonics, 2020, 7(11), p 3166–3176.

    Article  CAS  Google Scholar 

  2. X. Niu et al., High-Performance PZT-Based Stretchable Piezoelectric Nanogenerator, ACS Sustain. Chem. Eng., 2018, 7(1), p 979–985.

    Article  Google Scholar 

  3. W.Y. Pan, C.Q. Dam, Q.M. Zhang, and L.E. Cross, Large Displacement Transducers Based on Electric Field Forced Phase Transitions in the Tetragonal (Pb0.97La0.02(Ti.Zr.Sn)O3 Family of Ceramics, J. Appl. Phys., 1989, 66, p 6014–6023.

    Article  CAS  Google Scholar 

  4. M.D. Nguyen, E.P. Houwman, M.T. Do, and G. Rijnders, Relaxor-Ferroelectric Thin Film Heterostructure with Large Imprint for High energy-Storage Performance at Low Operating Voltage, Energy Storage Mater., 2020, 25, p 193–201.

    Article  Google Scholar 

  5. M.S. Mirshekarioo, K. Yao, and T. Sirtharan, Large Strain and High Energy Storage Density in Orthorhombic Perovskite (Pb0.97La0.02) (Zr1xySnxTiy)O3 Antiferroelectric Thin Films, Appl. Phys. Lett., 2010, 97, p 142902.

    Article  Google Scholar 

  6. B. Peng et al., Large Energy Storage Density and High Thermal Stability in a Highly Textured (111)-Oriented Pb0.8Ba0.2ZrO3 Relaxor Thin Film with the Coexistence of Antiferroelectric and ferroelecTric Phases, ACS Appl. Mater. Interfaces, 2015, 7(24), p 13512–13517.

    Article  CAS  PubMed  Google Scholar 

  7. K. Yao et al., Nonlinear Dielectric Thin Films for High-Power Electric Storage with Energy Density Comparable with Electrochemical Supercapacitors, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2011, 58(9), p 1968–1974.

    Article  PubMed  Google Scholar 

  8. X. Hao, Y. Wang, J. Yang, S. An, and J. Xu, High Energy-Storage Performance in Pb0.91La0.09(Ti0.65Zr0.35)O3 Relaxor Ferroelectric Thin Films, J. Appl. Phys., 2012, 112(11), p 114111.

    Article  Google Scholar 

  9. B.P. Bruno, A.R. Fahmy, M. Stürmer, U. Wallrabe, and M.C. Wapler, Properties of Piezoceramic Materials in High Electric Field Actuator Applications, Smart Mater. Struct., 2018, 28(1), p 015029.

    Article  Google Scholar 

  10. X. Wang, J. Shen, T. Yang, Y. Dong, and Y. Liu, High Energy-Storage Performance and Dielectric Properties of Antiferroelectric (Pb0.97La0.02)(Zr0.5Sn0.5xTix)O3 Ceramic, J. Alloys Compd., 2016, 655, p 309–313.

    Article  CAS  Google Scholar 

  11. G. Zhang et al., High-Energy Storage Performance of (Pb0.87Ba0.1La0.02)(Zr0.68Sn0.24Ti0.08)O3 Antiferroelectric Ceramics Fabricated by the Hot-Press Sintering Method, J. Am. Ceram. Soc., 2015, 98, p 1175–1181.

    Article  CAS  Google Scholar 

  12. X.L. Wang, L. Zhang, X.H. Hao, and S.L. An, High Energy-Storage Performance of 0.9Pb (Mg1/3Nb2/3)O3-0.1PbTiO3 Relaxor Ferroelectric Thin Films Prepared by RF Mag- Netron Sputtering, Mater. Res. Bull., 2015, 65, p 73–79.

    Article  CAS  Google Scholar 

  13. C.T. Nguyen, H.N. Vu, and M.D. Nguyen, High-Performance Energy Storage and Breakdown Strength of Low-Temperature Laser-Deposited Relaxor PLZT Thin Films on Flexible Ti-Foils, J. Alloys Compd., 2019, 802, p 422–429.

    Article  CAS  Google Scholar 

  14. H. Tang, Y. Lin, C. Andrews, and H.A. Sodano, Nanocomposites with Increased Energy Density Through High Aspect Ratio PZT Nanowires, Nanotechnology, 2011, 22, p 015702–015711.

    Article  PubMed  Google Scholar 

  15. Q. Zhang et al., High Recoverable Energy Density over a Wide Temperature Range in Sr Modified (Pb.La)(Zr.Sn.Ti)O3 Antiferroelectric Ceramics with an Orthorhombic Phase, Appl. Phys. Lett., 2016, 109, p 262901.

    Article  Google Scholar 

  16. L. Zhang, S. Jiang, B. Fan, and G. Zhang, High Energy Storage Performance in (Pb0.858Ba0.1La0.02Y0.008)(Zr0.65Sn0.3Ti0.05)O3-(Pb0.97La0.02)(Zr0.9Sn0.05Ti0.05)O3 Anti-Ferroelectric Composite Ceramics, Ceram. Int., 2015, 41(1), p 1139–1144.

    Article  Google Scholar 

  17. Y.Z. Li, Z.J. Wang, Y. Bai, and Z.D. Zhang, High Energy Storage Performance in Ca-doped PbZrO3 Antiferroelectric Films, J. Eur. Ceram. Soc., 2020, 40(4), p 1285–1292.

    Article  CAS  Google Scholar 

  18. D. Oliveira, M.A.A.V. Monteiro, and J.V. Filho, A New Structural Health Monitoring Strategy Based on PZT Sensors and Convolutional Neural Network, Sensors., 2018, 18(9), p 2955.

    Article  PubMed  PubMed Central  Google Scholar 

  19. J. Li et al., A Walking Type Piezoelectric Actuator Based on the Parasitic Motion of Obliquely Assembled PZT Stacks, Smart Mater. Struct., 2021, 30(8), p 085030.

    Article  Google Scholar 

  20. G. Lu, Y. Li, M. Zhou, Q. Feng, and G. Song, Detecting Damage Size and Shape in a Plate Structure Using PZT Transducer Array, J. Aerosp. Eng., 2018, 31(5), p 04018075.

    Article  Google Scholar 

  21. Y. Zhang et al., Enhanced Pyroelectric and Piezoelectric Properties of PZT with Aligned Porosity for Energy Harvesting Applications, J. Mater. Chem. A, 2017, 5(14), p 6569–6580.

    Article  CAS  Google Scholar 

  22. Y. Li et al., Flexible PLZT Antiferroelectric Film Capacitor for Energy Storage in Wide Temperature Range, J. Alloys Compd., 2021, 868, p 159129.

    Article  CAS  Google Scholar 

  23. P. Qiao, Y. Zhang, X. Chen, M. Zhou, G. Wang, and X. Dong, Effect of Mn-do** on Dielectric and Energy Storage Properties of (Pb0.91La0.06)(Zr0.96Ti0.04)O3 Antiferroelectric Ceramics, J. Alloys Compd., 2019, 780, p 581–587.

    Article  CAS  Google Scholar 

  24. H. Wu et al., Effect of Holding Time on Microstructure Ferroelectric and Energy-Storage Properties of Pb0.925La0.05Zr0.95Ti0.05O3@SiO2 Ceramics, J. Alloys Compd., 2022, 896, p 162932.

    Article  CAS  Google Scholar 

  25. X. Qin et al., Enhanced Energy-Storage Performance of Pb0.925La0.05Zr0.95Ti0.05@ x wt.%SiO2 Composite Ceramics, J. Alloys Compd., 2022, 890, p 161869.

    Article  CAS  Google Scholar 

  26. M. Kumar, G. Sharma, S.D. Kaushik, A.K. Singh, and S. Kumar, Critical Behavior of Relaxor Pb0.91La0.09Zr0.65Ti0.35O3: Interplay Between Polar Nano Regions, Electrocaloric and Energy Storage Response, J. Alloys Compd., 2021, 884, p 161067.

    Article  CAS  Google Scholar 

  27. J. Wang, Z.G. Wu, X.M. Yuan, S.R. Jiang, and P.X. Yan, The Effect of Heat-Treatment on the Structure and Chemical Homogeneity of Ferroelectrics PLZT Thin Films Deposited by RF Sputtering, Mater. Chem. Phys., 2004, 88(1), p 77–83.

    Article  CAS  Google Scholar 

  28. M.D. Nguyen, C.T. Nguyen, H.N. Vu, and G. Rijnders, Controlling Microstructure and Film Growth of Relaxor-Ferroelectric Thin Films for High Break-Down Strength and Energy-Storage Performance, J. Eur. Ceramic Soc., 2018, 38(1), p 95–103.

    Article  Google Scholar 

  29. A.A. Jeyaseelan and S. Dutta, Improvement in Piezoelectric Properties of PLZT Thin Film with Large Cation Do** at A-Site, J. Alloys Compd., 2020, 826, p 153956.

    Article  Google Scholar 

  30. G. Chen et al., Effects of the Film Thickness and Poling Electric Field on Photovoltaic Performances of (Pb.La)(Zr.Ti)O3 Ferroelectric Thin Film-Based Devices, Ceram. Int., 2020, 46(4), p 4148–4153.

    Article  CAS  Google Scholar 

  31. A. Anju Balaraman and S. Dutta, Inorganic Dielectric Materials for Energy Storage Applications: A Review, J. Phys. D Appl. Phys., 2022, 55(18), p 183002.

    Article  Google Scholar 

  32. B. Ma, Z. Hu, S. Liu, M. Narayanan, and U. Balachandran, Temperature Dependent Polarization Switching Properties of Ferroelectric Pb0.92La0.08Zr0.52Ti0.48Oδ Films Grown on Nickel Foils, Appl. Phys. Lett., 2013, 102(7), p 072901.

    Article  Google Scholar 

  33. S. Hong. Nanoscale phenomena in ferroelectric thin films. 2004.

  34. G.H. Haertling, Ferroelectric Thin Films for Electronic Applications, J. Vac. Sci. Technol. A: Vac. Surfaces Films, 1991, 9(3), p 414–420.

    Article  CAS  Google Scholar 

  35. F. Wang, D. Meng, X. Li, Z. Zhu, Z. Fu, and Y. Lu, Influence of Annealing Temperature on the Crystallization and Ferroelectricity of Perovskite CH3NH3PbI3 Film, Appl. Surface Sci., 2015, 357, p 391–396.

    Article  CAS  Google Scholar 

  36. P.D. Lomenzo, Q. Takmeel, S. Moghaddam, and T. Nishida, Annealing Behavior of Ferroelectric Si-Doped HfO2 Thin Films, Thin Solid Films., 2016, 615, p 139–144.

    Article  CAS  Google Scholar 

  37. Z. Lin, W. Cai, W. Jiang, C. Fu, C. Li, and Y. Song, Effects of Annealing Temperature on the Microstructure, Optical, Ferroelectric and Photovoltaic Properties of BiFeO3 Thin Films Prepared by Sol–Gel Method, Ceram. Int., 2013, 39(8), p 8729–8736.

    Article  CAS  Google Scholar 

  38. E. R. Myers and A. I. Kingon Ferroelectric Thin Films, in Materials Research Society Symposium Proceedings. 1990. p. Volume 200.

  39. E.B. Araujo et al., Processing and Structural Properties of Random Oriented Lead Lanthanum Zirconate Titanate Thin Films, Mater. Res. Bull., 2015, 61, p 26–31.

    Article  CAS  Google Scholar 

  40. G.L. Brennecka and B.A. Tuttle, Fabrication of Ultrathin Film Capacitors by Chemical Solution Deposition, J. Mater. Res., 2007, 22(10), p 2868–2874.

    Article  CAS  Google Scholar 

  41. A.P. Wilkinson, J.S. Speck, A.K. Cheetham, S. Natarajan, and J.M. Thomas, In Situ X-Ray Diffraction Study of Crystallization Kinetics in PbZr1−xTixO3,(PZT, x = 0, 055, 1.0), Chem. Mater., 1994, 6(6), p 750–754.

    Article  CAS  Google Scholar 

  42. A.Z. Simoes, A.H.M. Gonzalez, M.A. Zaghete, J.A. Varela, and B.D. Stojanovic, Effects of Annealing on the Crystallization and Roughness of PLZT Thin Films, Thin Solid Films., 2001, 384(1), p 132–137.

    Article  CAS  Google Scholar 

  43. S. Kandasamy et al., Heat Treatment Effects on the Formation of Lanthanum-Modified Lead Zirconate Titanate Thin Films, Mater. Lett., 2008, 62(3), p 370–373.

    Article  CAS  Google Scholar 

  44. G.H. Haertling, Thickness Dependent Properties of Acetate-Derived PLZT Films, Integr. Ferroelectr., 1997, 14(1–4), p 219–228.

    Article  CAS  Google Scholar 

  45. H. Pan, Y. Zeng, Y. Shen, Y.-H. Lin, and C.-W. Nan, Thickness-Dependent Dielectric and Energy Storage Properties of (Pb0.96La0.04)(Zr0.98Ti0.02)O3 Antiferroelectric Thin Films, J. Appl. Phys., 2016, 119(12), p 124106.

    Article  Google Scholar 

  46. C. Neusel, H. Jelitto, D. Schmidt, R. Janßen, F. Felten, and G.A. Schneider, Thickness-Dependence of the Breakdown Strength: Analysis of the Dielectric and Mechanical Failure, J. Eur. Ceram. Soc., 2015, 35(1), p 113–123.

    Article  CAS  Google Scholar 

  47. M.D. Nguyen, D.T. Tran, H.T. Dang, C.T. Nguyen, G. Rijnders, and H.N. Vu, Relaxor-Ferroelectric Films for Dielectric Tunable Applications: Effect of Film Thickness and Applied Electric Field, Materials, 2021, 14(21), p 6448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. J. Oh et al., The Dependence of Dielectric Properties on the Thickness of (Ba.Sr) TiO3 Thin Films, Curr. Appl. Phys., 2007, 7(2), p 168–171.

    Article  Google Scholar 

  49. J. Pérez De La Cruz, E. Joanni, P.M. Vilarinho, and A.L. Kholkin, Thickness Effect on the Dielectric, Ferroelectric, and Piezoelectric Properties of Ferroelectric Lead Zirconate Titanate Thin Films, J. Appl. Phys., 2010, 108(11), p 114106.

    Article  Google Scholar 

  50. X. Hao, J. Zhai, F. Zhou, X. Song, and S. An, Thickness and Frequency Dependence of Electric-Field-Induced Strains of Sol-Gel Derived (Pb0.97La0.02)(Zr0.95Ti0.05)O3 Antiferroelectric Films, J. Sol-gel Sci. Technol., 2010, 53(2), p 366–371.

    Article  CAS  Google Scholar 

  51. K. Natori, D. Otani, and N. Sano, Thickness Dependence of the Effective Dielectric Constant in a Thin Film Capacitor, Appl. Phys. Lett., 1998, 73(5), p 632–634.

    Article  CAS  Google Scholar 

  52. M. Avrami, Granulation, Phase change, and Microstructure Kinetics of Phase Change. III, J. Chem. Phys., 1941, 9(2), p 177–184.

    Article  CAS  Google Scholar 

  53. E. Fatuzzo, Theoretical Considerations on the Switching Transient in Ferroelectrics, Phys. Rev., 1962, 127(6), p 1999.

    Article  CAS  Google Scholar 

  54. Y. Ishibashi and Y. Takagi, Note on ferroelectric domain switching, J. Phys. Soc. Jpn., 1971, 31(2), p 506–510.

    Article  CAS  Google Scholar 

  55. V. Gopalan and T.E. Mitchell, In Situ Video Observation of 180 Domain Switching in LiTaO3 by Electro-Optic Imaging Microscopy, J. Appl. Phys., 1991, 85(4), p 2304–2311.

    Article  Google Scholar 

  56. R. Gaynutdinov, S. Yudin, S. Ducharme, and V. Fridkin, Homogeneous Switching in Ultrathin Ferroelectric Films, J. Phys. Condens. Matter, 2011, 24(1), p 015902.

    Article  PubMed  Google Scholar 

  57. M.J. Zou, Y.L. Tang, Y.P. Feng, W.R. Geng, X.L. Ma, and Y.L. Zhu, Influence of Flexoelectric Effects on Domain Switching in Ferroelectric Films, J. Appl. Phys., 2021, 129(18), p 184103.

    Article  CAS  Google Scholar 

  58. Z. Hu, B. Ma, S. Liu, M. Narayanan, and U. Balachandran, Relaxor Behavior and Energy Storage Performance of Ferroelectric PLZT Thin Films with Different Zr/Ti Ratios, Ceram. Int., 2014, 40(1), p 557–562.

    Article  CAS  Google Scholar 

  59. B. Ma, S. Liu, S. Tong, M. Narayanan, and U. Balachandran, Enhanced Dielectric Properties of Pb0.92La0.08Zr0.52Ti0.48O3 Films with Compressive Stress, J. Appl. Phys., 2012, 112(11), p 114117.

    Article  Google Scholar 

  60. S. Tong et al., Effect of Lanthanum Content and Substrate Strain on Structural and Electrical Properties of Lead Lanthanum Zirconate Titanate thin Films, Mater. Chem. Phys., 2013, 140(2–3), p 427–430.

    Article  CAS  Google Scholar 

  61. W. Xu, Q. Li, Z. Yin, X. Wang, and H. Zou, Effect of La Do** on Crystalline Orientation, Microstructure and Dielectric Properties of PZT Thin Films, Mater. Test., 2017, 59(10), p 885–889.

    Article  CAS  Google Scholar 

  62. A. Antony Jeyaseelan and S. Dutta, Effect of Ligand Concentration on Microstructure, Ferroelectric and Piezoelectric Properties of PLZT Film, Mater. Chem. Phys., 2015, 162, p 487–490.

    Article  CAS  Google Scholar 

  63. N. Md, Impact of Fatigue Behavior on Energy Storage Performance in Dielectric Thin-Film Capacitors, J. Eur. Ceram. Soc., 2020, 40(5), p 1886–1895.

    Article  Google Scholar 

  64. A. Pandey, S. Dalal, S. Dutta, and A. Dixit, Structural Characterization of Polycrystalline Thin Films by X-ray Diffraction Techniques, J. Mater. Sci.: Mater. Electron., 2021, 32, p 1341–1368.

    CAS  Google Scholar 

  65. F. Vassenden, G. Linker, and J. Geerk, Growth Direction Control YBCO Thin Films, Physica C, 1991, 175(5–6), p 566–572.

    Article  CAS  Google Scholar 

  66. T. Nakamura, Y. Yamada, T. Kusumori, H. Minoura, and H. Muto, Improvement in the Crystallinity of ZnO Thin Films by Introduction of a Buffer Layer, Thin Solid Films, 2002, 411(1), p 60–64.

    Article  CAS  Google Scholar 

  67. N. Jackson, F. Stam, J. O’Brien, L. Kailas, A. Mathewson, and C. O’Murchu, Crystallinity and Mechanical Effects From Annealing Parylene Thin Films, Thin Solid Films, 2016, 603, p 371–376.

    Article  CAS  Google Scholar 

  68. M. Toyoda, Y. Nanbu, Y. Nakazawa, M. Hirano, and M. Inagaki, Effect of Crystallinity of Anatase on Photoactivity for Methyleneblue Decomposition in Water, Appl. Catal. B Environ., 2004, 49(4), p 227–232.

    Article  CAS  Google Scholar 

  69. X. Hao, J. Zhou, and S. An, Effects of PbO Content on the Dielectric Properties and Energy Storage Performance of (Pb0.97La0.02)(Zr0.97Ti0.03)O3 Antiferroelectric Thin Films, J. Am. Ceram. Soc., 2011, 94(6), p 1647–1650.

    Article  CAS  Google Scholar 

  70. S. Gariglio, N. Stucki, J.-M. Triscone, and G. Triscone, Strain relaxation and critical temperature in epitaxial ferroelectric Pb (Zr0.20Ti0.80)O3 thin films, Appl. Phys. Lett., 2007, 90(20), p 202905.

    Article  Google Scholar 

  71. Z. Zhao et al., Grain-Size Effects on the Ferroelectric Behavior of Dense Nanocrystalline BaTiO3 Ceramics, Phys. Rev. B, 2004, 70(2), p 024107.

    Article  Google Scholar 

  72. M.D. Nguyen, Tuning the Energy Storage Performance, Piezoelectric Strain and Strain Hysteresis of Relaxor PLZT Thin Films Through Controlled Microstructure by Changing the Ablation Rate, J. Eur. Ceram. Soc., 2019, 39(6), p 2076–2081.

    Article  CAS  Google Scholar 

  73. S.J. Kang and Y.H. Joung, Fatigue, Retention and Switching Properties of PLZT (x/30/70) Thin Films with Various La Concentrations, J. Mater. Sci., 2007, 42(18), p 7899–7905.

    Article  CAS  Google Scholar 

  74. G. Viola, K. Boon Chong, F. Guiu, and M. John Reece, Role of Internal Field and Exhaustion in Ferroelectric Switching, J. Appl. Phys., 2014, 115(3), p 034106.

    Article  Google Scholar 

  75. Y. Tan et al., Unfolding Grain Size Effects in Barium Titanate Ferroelectric Ceramics, Sci. Rep., 2015, 5(1), p 1–9.

    CAS  Google Scholar 

  76. M. Eriksson et al., Ferroelectric Domain Structures and Electrical properties of Fine-Grained Lead-Free Sodium potassium Niobate Ceramics, J. Am. Ceram. Soc., 2011, 94(10), p 3391–3396.

    Article  CAS  Google Scholar 

  77. J.-F. Chou, M.-H. Lin, and H.-Y. Lu, Ferroelectric Domains in Pressureless-Sintered Barium Titanate, Acta Mater., 2000, 48(13), p 3569–3579.

    Article  CAS  Google Scholar 

  78. W. Cao, The Strain Limits on Switching, Nat. Mater., 2005, 4(10), p 727–728.

    Article  CAS  PubMed  Google Scholar 

  79. H.T. Martirena and J.C. Burfoot, Grain-Size Effects on Properties of Some Ferroelectric Ceramics, J. Phys. C Solid State Phys., 1974, 7(17), p 3182.

    Article  CAS  Google Scholar 

  80. A. Kumar, S.R. Emani, K.C.J. Raju, J. Ryu, and A.R. James, Investigation of the Effects of Reduced Sintering Temperature on Dielectric, Ferroelectric and Energy Storage Properties of Microwave-Sintered PLZT 8/60/40 Ceramics, Energies, 2020, 13(23), p 6457.

    Article  CAS  Google Scholar 

  81. M.D. Nguyen, C.T. Nguyen, H.N. Vu, and G. Rijnders, Experimental Evidence of Breakdown Strength and its Effect on Energy-Storage Performance in Normal and Relaxor Ferroelectric Films, Curr. Appl. Phys., 2019, 19(9), p 1040–1045.

    Article  Google Scholar 

  82. M.D. Nguyen, E.P. Houwman, and G. Rijnders, Energy Storage Performance and Electric Breakdown Field of Thin Relaxor Ferroelectric PLZT Films Using Microstructure and Growth Orientation Control, J. Phys. Chem. C, 2018, 122(27), p 15171–15179.

    Article  CAS  Google Scholar 

  83. T. Hirano, H. Kawai, H. Suzuki, S. Kaneko, and A. Wada, Effect of Excess Lead Addition on Processing of Sol-Gel Derived Lanthanum-Modified Lead Zirconate Titanate Thin Film, Jpn. J. Appl. Phys., 1999, 38(9S), p 5354.

    Article  CAS  Google Scholar 

  84. S. Tong et al., Lead Lanthanum Zirconate Titanate Ceramic Thin Films for Energy Storage, ACS Appl. Mater. Interfaces, 2013, 5(4), p 1474–1480.

    Article  CAS  PubMed  Google Scholar 

  85. B. Ma et al., Residual Stress of (Pb0.92La0.08)(Zr0.52Ti0.48)O3 Films Grown by a Sol–Gel Process, Smart Mater. Struct., 2013, 22(5), p 055019.

    Article  CAS  Google Scholar 

  86. C. Vijayaraghavan, T.C. Goel, and R.G. Mendiratta, Structural and Electrical Properties of Sol-Gel Synthesized PLZT Thin Films, IEEE Trans. Dielectr. Electr. Insul., 1999, 6(1), p 69–72.

    Article  CAS  Google Scholar 

  87. Y. Zhao, X. Hao, and Q. Zhang, Energy-Storage Properties and Electrocaloric Effect of Pb (1–3 x/2) La x Zr0.85Ti0.15O3 Antiferroelectric Thick Films, ACS Appl. Mater. Interfaces, 2014, 6(14), p 11633–11639.

    Article  CAS  PubMed  Google Scholar 

  88. M.D. Nguyen, E.P. Houwman, M. Dekkers, C.T. Nguyen, H.N. Vu, and G. Rijnders, Research Update: Enhanced Energy Storage Density and Energy Efficiency of Epitaxial Pb0.9La0.1(Zr0.52Ti0.48)O3 Relaxor-Ferroelectric Thin-Films Deposited on Silicon by Pulsed Laser Deposition, APL Mater., 2016, 4(8), p 080701.

    Article  Google Scholar 

  89. E. Brown, C. Ma, J. Acharya, B. Ma, J. Wu, and J. Li, Controlling Dielectric and Relaxor-Ferroelectric Properties for Energy Storage by tuning Pb0.92La0.08Zr0.52Ti0.48O3 Film Thickness, ACS Appl. Mater. Interfaces, 2014, 6(24), p 22417–22422.

    Article  CAS  PubMed  Google Scholar 

  90. B. Ma, D.-K. Kwon, M. Narayanan, and U. Balachandran, Dielectric Properties and Energy Storage Capability of Antiferroelectric Pb0.92La0.08Zr0.95Ti0.05O3 Film-on-Foil Capacitors, J. Mater. Res., 2009, 24, p 2993.

    Article  CAS  Google Scholar 

  91. I. K. Yoo and S. B. Desu., “Fatigue parameters of lead zirconate titanate thin films, in MRS Online Proceedings Library (OPL), 1991, p. 243.

  92. J.F. Scott and C.A.P. de Araujo, Ferroelectric Memories, Science, 1989, 246(4936), p 1400–1405.

    Article  CAS  PubMed  Google Scholar 

  93. L. He and D. Vanderbilt, First-Principles Study of Oxygen-Vacancy Pinning of Domain Walls in PbTiO3, Phys. Rev. B, 2003, 68(13), p 134103.

    Article  Google Scholar 

  94. Y.-K. Choi, T. Hoshina, H. Takeda, and T. Tsurumi, Effect of Oxygen Vacancy and Oxygen Vacancy Migration on Dielectric Response of BaTiO3-Based Ceramics, Jpn. J. Appl. Phys., 2011, 50, p 031504.

    Article  Google Scholar 

  95. C.S. Hwang, Thickness-Dependent Dielectric Constants of (Ba, Sr) TiO3 Thin Films with Pt or Conducting Oxide Electrodes, J. Appl. Phys., 2002, 92(1), p 432–437.

    Article  CAS  Google Scholar 

  96. T.M. Doan, L. Lu, and M.O. Lai, Thickness Dependence of Structure, Tunable and Pyroelectric Properties of Laser-Ablated Ba (Zr0.25Ti0.75)O3 Thin Films, J. Phys. D. Appl. Phys., 2010, 43(3), p 035402.

    Article  Google Scholar 

  97. S. Song, J. Zhai, L. Gao, X. Yao, S. Lu, and Z. Xu, Thickness-Dependent Dielectric and Tunable Properties of Barium stannate Titanate Thin Films, J. Appl. Phys., 2009, 106(2), p 024104.

    Article  Google Scholar 

  98. H. Yang, F. Yan, Y. Lin, T. Wang, L. He, and F. Wang, A Lead Free Relaxation and High Energy Storage Efficiency Ceramics for Energy Storage Applications, J. Alloys Compd., 2017, 710, p 436.

    Article  CAS  Google Scholar 

  99. Y. Podgorny, K. Vorotilov, P. Lavrov, and A. Sigov, Leakage Currents in Porous PZT Films, Ferroelectrics, 2016, 503(1), p 77–84.

    Article  CAS  Google Scholar 

  100. P. Shi et al., Study on the Properties of Pb (Zr, Ti)O3 Thin Films Grown Alternately by Pulsed Laser Deposition and Sol-Gel Method, Phys. Lett. A, 2020, 384(11), p 126232.

    Article  CAS  Google Scholar 

  101. C.M. Raghavan, J.W. Kim, and S.S. Kim, Effects of Ho and Ti Do** on Structural and Electrical Properties of BiFeO3 Thin Films, J. Am. Ceram. Soc., 2014, 97(1), p 235–240.

    Article  CAS  Google Scholar 

  102. J. Narayan, R.A. Weeks, and E. Sonder, Aggregation of Defects and Thermal-Electric Breakdown in MgO, J. Appl. Phys., 1978, 49(12), p 5977–5981.

    Article  CAS  Google Scholar 

  103. K. Kukli et al., Properties of Hafnium Oxide Films Grown by Atomic Layer Deposition from Hafnium Tetraiodide and Oxygen, J. Appl. Phys., 2002, 92(10), p 5698–5703.

    Article  CAS  Google Scholar 

  104. K. McKenna et al., Grain Boundary Mediated Leakage Current in Polycrystalline HfO2 Films, Microelectron. Eng., 2011, 88(7), p 1272–1275.

    Article  CAS  Google Scholar 

  105. K. Murakami, M. Rommel, V. Yanev, A.J. Bauer, and L. Frey, Current Voltage Characteristics through Grains and Grain Boundaries of High-k Dielectric Thin Films Measured by Tunneling Atomic Force Microscopy, AIP Conf. Proc., 2011, 1395, p 134–138.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the research facilities and infrastructure from CSIR-National Aerospace Laboratories. A.A.B acknowledges the doctoral fellowship from CSIR, India, and AcSIR, Ghaziabad, for the Ph.D. position to carry out the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soma Dutta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaraman, A.A., Jeyaseelan, A.A. & Dutta, S. Process-Controlled Domain Switching and Improved Ferroelectric Properties in Lanthanum-Modified Lead Zirconate Titanate Films. J. of Materi Eng and Perform 33, 2585–2598 (2024). https://doi.org/10.1007/s11665-023-08163-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08163-2

Keywords

Navigation