Log in

Critical Role of Organometallic Chemical Vapor Deposition Temperature in Tuning Composition, Structural Units, Microstructure, and Corrosion Performance of SiOC Coatings

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, the impact of organometallic chemical vapor deposition (MOCVD) deposition temperature on the growth mechanism of SiOC coatings was studied in detail. For this purpose, four different SiOC coatings were prepared at deposition temperatures of 1050, 1100, 1150, and 1200 °C. The surface morphology and surface roughness of the prepared coatings were examined by field-emission scanning electron microscope (FESEM) and atomic force microscope (AFM), respectively. X-ray photoelectron spectroscopy (XPS) was employed to analyze the composition and structural units in the prepared coatings. The phase structure of SiOC coatings was analyzed by grazing incident diffraction of x-rays (GIXRD) and high resolution transmission electron microscope (HRTEM). Results revealed that, the starting temperature of homogeneous reaction in the cavity is 1100 °C, while the degree of heterogeneous reaction in the cavity reaches its maximum value at 1200 °C. With the increase in deposition temperature, more surface protrusions, a greater degree of homogeneous reaction and the evolution of graphite and 3C-SiC crystalline phases are resulted, which lead to the reduction of deposition rate of SiOC coatings. Furthermore, for SiOC coatings, flat surface morphology and less content of Si-O-Si bonds improve the HF acid etching resistance of SiOC coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Choi, D.S. Jung, and J.W. Choi, Scalable Fracture-free SiOC Glass Coating for Robust Silicon Nanoparticle Anodes in Lithium Secondary Batteries, Nano Lett., 2014, 14(12), p 7120–7125.

    Article  CAS  Google Scholar 

  2. J. Kaspar, M. Graczyk-Zajac, S. Lauterbach, H.J. Kleebe, and R. Riedel, Silicon Oxycarbide/nano-Silicon Composite Anodes for Li-ion Batteries: Considerable Influence of Nano-Crystalline vs. Nano-Amorphous Silicon Embedment on the Electrochemical Properties, J. Power Sour., 2014, 269, p 164–172.

    Article  CAS  Google Scholar 

  3. M. Bik, A. Gil, M. Stygar, J. Dabrowa, P. Jelen, E. Dlugon, M. Lesniak, and M. Sitarz, Studies on the Oxidation Resistance of SiOC Glasses Coated TiAl aAlloy, Intermetallics, 2019, 105, p 29–38.

    Article  CAS  Google Scholar 

  4. K. Lu, D. Erb, and M.Y. Liu, Thermal Stability and Electrical Conductivity of Carbon-Enriched Silicon Oxycarbide, J. Mater. Chem. C, 2016, 4(9), p 1829–1837.

    Article  CAS  Google Scholar 

  5. P. Uznanski, A. Walkiewicz-Pietrzykowska, K. Jankowski, J. Zakrzewska, A.M. Wrobel, J. Balcerzak, and J. Tyczkowski, Atomic Hydrogen Induced Chemical Vapor Deposition of Silicon Oxycarbide Thin Films Derived from Diethoxymethylsilane Precursor, Appl. Organomet. Chem., 2020, 34(8), p e5674.

    Article  CAS  Google Scholar 

  6. S.A. Alvi and F. Akhtar, High Temperature Tribology of Polymer Derived Ceramic Composite Coatings, Sci. Rep., 2018, 8, p 15105.

    Article  Google Scholar 

  7. N. Yang and K. Lu, Effects of Transition Metals on the Evolution of Polymer-Derived SiOC Ceramics, Carbon, 2021, 171, p 88–95.

    Article  CAS  Google Scholar 

  8. M. Gaweda, P. Jelen, M. Bik, M. Lesniak, M. Sowa, W. Simka, M. Golda-Cepa, M. Brzychczy-Wloch, Z. Olejniczak, M. Nocun, and M. Sitarz, Modification of SiOC-Based Layers with Cerium Ions - Influence on the Structure, Microstructure and Corrosion Resistance, Appl. Surf. Sci., 2021, 543, p 148871.

    Article  CAS  Google Scholar 

  9. Z. Zhao, M. Niu, H. Wang, H. Gao, K. Peng, H. Zang, and M. Ma, Preparation and the Effects of Ion Irradiation on Bulk SiOC Ceramics, J. Eur. Ceram. Soc., 2019, 39(4), p 832–837.

    Article  CAS  Google Scholar 

  10. M. Noborisaka, H. Kodama, S. Nagashima, A. Shirakura, T. Horiuchi, and T. Suzuki, Synthesis of Transparent and Hard SiOC(-H) Thin Films on Polycarbonate Substrates by PECVD Method, Surf. Coat. Technol., 2012, 206(8–9), p 2581–2584.

    Article  CAS  Google Scholar 

  11. X. Hu, Y. Peng, X. Wang, X. Han, B. Li, Y. Yang, M. Xu, X. Xu, J. Han, D. Wang, and K.Y. Cheong, Nucleation Growth Mechanism of Diamond on 4H-SiC Substrate by Microwave Plasma Chemical Vapor Deposition, Mater. Today Commun., 2022, 31, p 103563.

    Article  CAS  Google Scholar 

  12. P. Jeleń, M. Bik, M. Nocuń, M. Gawęda, E. Długoń, and M. Sitarz, Free Carbon Phase in SiOC Glasses Derived From Ladder-Like Silsesquioxanes, J. Mol. Struct., 2016, 1126, p 172–176.

    Article  Google Scholar 

  13. Z.Y. Sang, X. Yan, L. Wen, D. Su, Z.H. Zhao, Y. Liu, H.M. Ji, J. Liang, and S.X. Dou, A Graphene-Modified Flexible SiOC Ceramic Cloth for High-Performance Lithium Storage, Energy Storage Mater., 2020, 25, p 876–884.

    Article  Google Scholar 

  14. Y. Zhang, M. Wen, G.X. Sun, H. Huang, S.M. Zhang, M.J. Wang, K. Zhang, H.P. Pang, and W.T. Zheng, Insight into Microstructural Architectures Contributing to the Tensile Strength of Continuous W-core SiC Fiber, J. Eur. Ceram. Soc., 2020, 40(15), p 5147–5161.

    Article  Google Scholar 

  15. B. Reznik, D. Gerthsen, W. Zhang, and K.J. Hüttinger, Microstructure of SiC Deposited from Methyltrichlorosilane, J. Eur. Ceram. Soc., 2003, 23(9), p 1499–1508.

    Article  CAS  Google Scholar 

  16. G.D. Papasouliotis, and S.V. Sotirchos, On the Homogeneous Chemistry of the Thermal Decomposition of Methyltrichlorosilane: Thermodynamic Analysis and Kinetic Modeling, J. Electrochem. Soc., 1994, 141(6), p 1599–1611.

    Article  CAS  Google Scholar 

  17. K. **a, C. Li, S. Zhao, Y. Li, L. Duan, and X. Liu, Effect of HF and NaOH Etching on the Composition and Structure of SiOC Ceramics, Ceram. Int., 2022, 48(2), p 1789–1795.

    Article  CAS  Google Scholar 

  18. G.D. Soraru, L. Kundanati, B. Santhosh, and N. Pugno, Influence of free Carbon on the Young’s Modulus and Hardness of Polymer-Derived Silicon Oxycarbide Glasses, J. Am. Ceram. Soc., 2019, 102(3), p 907–913.

    Article  CAS  Google Scholar 

  19. S. Yu, R. Tub, and T. Goto, Preparation of SiOC Nanocomposite Films by Laser Chemical Vapor Deposition, J. Eur. Ceram. Soc., 2016, 36(3), p 403–409.

    Article  CAS  Google Scholar 

  20. Y. Long, A. Javed, I. Shapiro, Z.K. Chen, X. **ong, and P. **ao, The Effect of Substrate Position on the Microstructure and Mechanical Properties of SiC Coatings on Carbon/Carbon Composites, Surf. Coat. Technol., 2011, 206(2–3), p 568–574.

    Article  CAS  Google Scholar 

  21. H. Liu, N.U.H. Tariq, W. **g, X. Cui, M. Tang, and T. **ong, Tuning Mechanical and Corrosion Performance of SiOC Glass Coatings Prepared by Thermal MOCVD, J. Non-Crystall. Solids, 2022, 579, p 121378.

    Article  CAS  Google Scholar 

  22. W. Zhou and Y. Long, Mechanical Properties of CVD-SiC Coatings with Si Impurity, Ceram. Int., 2018, 44(17), p 21730–21733.

    Article  CAS  Google Scholar 

  23. G.D. Papasouliotis and S.V. Sotirchos, On The Homogeneous Chemistry of the Thermal-Decomposition of Methyltrichlorosilane - Thermodynamic Analysis and Kinetic Modeling, J. Electrochem. Soc., 1994, 141(6), p 1599–1611.

    Article  CAS  Google Scholar 

  24. E. Lopez-Honorato, J. Tan, P.J. Meadows, G. Marsh, and P. **ao, TRISO Coated Fuel Particles with Enhanced SiC Properties, J. Nucl. Mater., 2009, 392(2), p 219–224.

    Article  CAS  Google Scholar 

  25. B. Schultrich, Structure of Amorphous Carbon, Tetrahedrally Bonded Amorphous Carbon Films I: Basics Structure and Preparationed, Springer, Berlin Heidelberg, 2018, p 195–272

    Google Scholar 

  26. C. Stabler, E. Ionescu, M. Graczyk-Zajac, I. Gonzalo-Juan, and R. Riedel, Silicon Oxycarbide Glasses and Glass-Ceramics: “All-Rounder” Materials for Advanced Structural and Functional Applications, J. Am. Ceram. Soc., 2018, 101(11), p 4817–4856.

    Article  CAS  Google Scholar 

  27. S.J. Widgeon, S. Sen, G. Mera, E. Ionescu, R. Riedel, and A. Navrotsky, 29Si and 13C Solid-State NMR Spectroscopic Study of Nanometer-Scale Structure and Mass Fractal Characteristics of Amorphous Polymer Derived Silicon Oxycarbide Ceramics, Chem. Mater., 2010, 22(23), p 6221–6228.

    Article  CAS  Google Scholar 

  28. L.-Y. Chen and F.C.-N. Hong, Diamond-Like Carbon Nanocomposite Films, Appl. Phys. Lett., 2003, 82(20), p 3526–3528.

    Article  CAS  Google Scholar 

  29. V.V. Pujar and J.D. Cawley, Effect of Stacking Faults on the X-ray Diffraction Profiles of β-SiC Powders, J. Am. Ceram. Soc., 1995, 78(3), p 774–782.

    Article  CAS  Google Scholar 

  30. N. Nordell, S. Nishino, J.W. Yang, C. Jacob, and P. Pirouz, Influence of H-2 Addition and Growth Temperature On CVD Of SiC Using Hexamethyldisilane and Ar, J. Electrochem. Soc., 1995, 142(2), p 565–571.

    Article  CAS  Google Scholar 

  31. K.L. Choy and B. Derby, The CVD of TiB 2 Protective Coating on SiC Monofilament Fibres, J. De Phys. IV, 1991, 02, p C2-697.

    Google Scholar 

  32. M.F. Iastrenski, P.R. Catarini da Silva, C.R. Teixeira Tarley, M.G. Segatelli, Influence of Molecular Architecture of Si-Containing Pprecursors and HF Chemical Treatment on Structural and Textural Features of Silicon Oxycarbide (SiOC) Materials, Ceram. Int., 45(17), 21698–21708 (2019)

Download references

Acknowledgments

This work was supported by the National Key Research and Development Project (2019YFB2005302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingqiang Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**g, W., ul Haq Tariq, N., Cui, X. et al. Critical Role of Organometallic Chemical Vapor Deposition Temperature in Tuning Composition, Structural Units, Microstructure, and Corrosion Performance of SiOC Coatings. J. of Materi Eng and Perform 32, 11064–11074 (2023). https://doi.org/10.1007/s11665-023-07916-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-07916-3

Keywords

Navigation