Log in

High Recovery Stress Performance of NiTi Shape Memory Alloy with a Wide Temperature Window

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The prestressing applications of shape memory alloys (SMAs) employs the recovery stress of a constrained SMA element that originates from its attempt to revert a pre-deformation to original shape upon heating. As the most readily available SMAs, NiTi alloys have shown poor performance of recovery stress compared to NiTiNb and FeMnSiCrNi due to their relatively small transformation hysteresis. This work investigated the effects of heat treatment and prestraining on the martensitic phase transformation characteristics and mechanical properties. It is found that suitably selected heat treatment and prestraining treatment can effectively tune the transformation hysteresis to greater than 100 °C while retaining reasonably high strength, which greatly elevate the recovery stress of NiTi–SMAs. A large recovery stresses of approximately 300 MPa with a wide temperature window of 180 °C of stable performance can be achieved via a simple one-step heat treatment and prestraining treatment using commercial superelastic NiTi wire products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The raw data required to reproduce these findings are available from the corresponding author by request.

References

  1. C.N. Saikrishna, K.V. Ramaiah, and S.K. Bhaumik, Effects of Thermo-Mechanical Cycling on the Strain Response of Ni–Ti–Cu Shape Memory Alloy Wire Actuator, Mater. Sci. Eng. A, 2006, 428(1), p 217–224.

    Article  Google Scholar 

  2. A. Ishida, M. Sato, K. Ogawa, and K. Yamada, Shape Memory Behavior of Ti–Ni–Cu Thin Films, Mater. Sci. Eng. A, 2006, 438–440, p 683–686.

    Article  Google Scholar 

  3. W. **nmei, Xu. Baoxing, and Y. Zhufeng, Phase Transformation Behavior of Pseudoelastic NiTi Shape Memory Alloys under Large Strain, J. Alloy. Compd., 2008, 463(1–2), p 417–422.

    Google Scholar 

  4. A.M. Condó, F.C. Lovey, J. Olbricht, C. Somsen, and A. Yawny, Microstructural Aspects Related to Pseudoelastic Cycling in Ultra Fine Grained Ni–Ti, Mater. Sci. Eng. A, 2008, 481–482, p 138–141.

    Article  Google Scholar 

  5. N.A. Mansour, A.M.R.F. El-Bab, S.F.M. Assal, and O. Tabata, Design, Characterization and Control of SMA Springs-Based Multi-Modal Tactile Display Device for Biomedical Applications, Mechatronics, 2015, 31, p 255–263.

    Article  Google Scholar 

  6. S. Li, Y.-W. Kim, M.-S. Choi, J.G. Kim, and T.-H. Nam, Superelasticity, Microstructure and Texture Characteristics of the Rapidly Solidified Ti–Zr–Nb–Sn Shape Memory Alloy Fibers for Biomedical Applications, Mater. Sci. Eng. A, 2022, 831, p 142001.

    Article  CAS  Google Scholar 

  7. F. Gok, S.K. Buyuk, S. Ozkan, and Y.A. Benkli, Comparison of Arch Width and Depth Changes and Pain/Discomfort with Conventional and Copper Ni-Ti Archwires for Mandibular Arch Alignment, J. World Fed. Orthod., 2018, 7(1), p 24–28.

    Google Scholar 

  8. H. Hashemzadeh, M. Soleimani, M. Golbar, A.D. Soltani, and S.P. Mirmalek, Canine and Molar Movement, Rotation and Tip** by NiTi Coils versus Elastomeric Chains in First Maxillary Premolar Extraction Orthodontic Adolescents: A Randomized Split-Mouth Study, Int. Orthod., 2022, 20(1), p 100601.

    Article  Google Scholar 

  9. A. Riccio, A. Sellitto, S. Ameduri, A. Concilio, and M. Arena, Chapter 24–Shape memory alloys (SMA) for automotive applications and challenges, Shape Memory Alloy Engineering (Second Edition). A. Concilio, V. Antonucci, F. Auricchio, L. Lecce, E. Sacco Ed., Butterworth-Heinemann, Boston, 2021, p 785–808

    Chapter  Google Scholar 

  10. D. Stoeckel, Shape Memory Actuators for Automotive Applications, Mater. Des., 1990, 11(6), p 302–307.

    Article  Google Scholar 

  11. A. Villanueva, C. Smith, and S. Priya, A Biomimetic Robotic Jellyfish (Robojelly) Actuated by Shape Memory Alloy Composite Actuators, Bioinspir. Biomim., 2011, 6(3), p 036004.

    Article  Google Scholar 

  12. M. Sreekumar, T. Nagarajan, M. Singaperumal, M. Zoppi, and R. Molfino, Critical Review of Current Trends in Shape Memory Alloy Actuators for Intelligent Robots, Ind. Robot Int. J. Robot. Res. Appl., 2007, 34(4), p 285–294.

    Article  Google Scholar 

  13. D.J. Hartl and D.C. Lagoudas, Aerospace Applications of Shape Memory Alloys, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., 2007, 221(G4), p 535–552.

    Article  CAS  Google Scholar 

  14. C. Fang, W. Wang, C.X. Qiu, S.L. Hu, G.A. MacRae, and M.R. Eatherton, Seismic Resilient Steel Structures: A Review of Research, Practice, Challenges and Opportunities, J. Constr. Steel Res., 2022, 191, p 107172.

    Article  Google Scholar 

  15. J. Almeida, M. Steinmetz, F. Rigot, and S.D. Cock, Shape-Memory NiTi alloy Rebars in Flexural-Controlled Large-Scale Reinforced Concrete Walls: Experimental Investigation on Self-Centring and Damage Limitation, Eng. Struct., 2020, 220, p 110865.

    Article  Google Scholar 

  16. L. Cortes-Puentes, M. Zaidi, D. Palermo, and E. Dragomirescu, Cyclic Loading Testing of Repaired SMA and Steel Reinforced Concrete Shear Walls, Eng. Struct., 2018, 168, p 128–141.

    Article  Google Scholar 

  17. A. Billah and M.S. Alam, Seismic Performance of Concrete Columns Reinforced with Hybrid Shape Memory Alloy (SMA) and Fiber Reinforced Polymer (FRP) Bars, Constr. Build. Mater., 2012, 28(1), p 730–742.

    Article  Google Scholar 

  18. M. Miralami, M.R. Esfahani, and M. Tavakkolizadeh, Strengthening of Circular RC Column-Foundation Connections with GFRP/SMA Bars and CFRP Wraps, Compos. B Eng., 2019, 172, p 161–172.

    Article  CAS  Google Scholar 

  19. M.M. Sherif, E.M. Khakimova, J. Tanks, and O.E. Ozbulut, Cyclic Flexural Behavior of Hybrid SMA/Steel Fiber Reinforced Concrete Analyzed by Optical and Acoustic Techniques, Compos. Struct., 2018, 201, p 248–260.

    Article  Google Scholar 

  20. H. Li, Z.-Q. Liu, and J.-P. Ou, Experimental Study of a Simple Reinforced Concrete Beam Temporarily Strengthened by SMA Wires Followed by Permanent Strengthening with CFRP Plates, Eng. Struct., 2008, 30(3), p 716–723.

    Article  Google Scholar 

  21. G. McGavin, G. Guerin, Real-Time Seismic Dam** and Frequency Control of Steel Structures using Nitinol Wire. In: Smart Structures and Materials 2002 Conference, San Diego, Ca, 2002, pp. 176-185

  22. G. Song, N. Ma, and H.N. Li, Applications of Shape Memory Alloys in Civil Structures, Eng. Struct., 2006, 28(9), p 1266–1274.

    Article  Google Scholar 

  23. K. Zeynali, H.S. Monir, N.M. Mirzai, and J.W. Hu, Experimental and Numerical Investigation of Lead-Rubber Dampers in Chevron Concentrically Braced Frames, Arch Civ Mech Eng, 2018, 18(1), p 162–178.

    Article  Google Scholar 

  24. S. Sun, R. Rajapakse, Dynamic Response of a Frame with SMA Bracing. In: Smart Structures and Materials 2003 Conference, San Diego, Ca, 2003, pp. 262-270

  25. Y. Zhang and S. Zhu, A Shape Memory Alloy-Based Reusable Hysteretic Damper for Seismic Hazard Mitigation, Smart Mater. Struct., 2007, 16(5), p 1603.

    Article  Google Scholar 

  26. E. Choi, S.C. Cho, J.W. Hu, T. Park, and Y.S. Chung, Recovery and Residual Stress of SMA Wires and Applications for Concrete Structures, Smart Mater. Struct., 2010, 19(9), p 094013.

    Article  Google Scholar 

  27. R. El-Hacha and K. Abdelrahman, Behaviour of circular SMA-Confined Reinforced Concrete Columns Subjected to Eccentric Loading, Eng. Struct., 2020, 215, p 110443.

    Article  Google Scholar 

  28. R. Suhail, G. Amato, and D.P. McCrum, Active and Passive Confinement of Shape Modified Low Strength Concrete Columns using SMA and FRP Systems, Compos. Struct., 2020, 251, p 112649.

    Article  Google Scholar 

  29. J.-H. Lee, E. Choi, and J.-S. Jeon, Experimental Investigation on the Performance of Flexural Displacement Recovery using Crimped Shape Memory Alloy Fibers, Constr. Build. Mater., 2021, 306, p 124908.

    Article  Google Scholar 

  30. E. Choi, J.-S. Jeon, and J.-H. Lee, Active Action of Prestressing on Direct Tensile Behavior of Mortar Reinforced with NiTi SMA Crimped Fibers, Compos. Struct., 2022, 281, p 115119.

    Article  CAS  Google Scholar 

  31. E. Choi, A. Ostadrahimi, Y. Lee, J.-S. Jeon, and I. Kim, Enabling Shape Memory Effect Wires for Acting Like Superelastic Wires in Terms of Showing Recentering Capacity in Mortar Beams, Constr. Build. Mater., 2022, 319, p 126047.

    Article  Google Scholar 

  32. A.I. Abdy, H.M. Javad, and A.M. Riadh, Fatigue Life Improvement of Steel Structures Using Self-Prestressing CFRP/SMA Hybrid Composite Patches, Eng. Struct., 2018, 174, p 358–372.

    Article  Google Scholar 

  33. M. El-Tahan, M. Dawood, and G. Song, Development of a Self-Stressing NiTiNb Shape Memory Alloy (SMA)/Fiber Reinforced Polymer (FRP) Patch, Smart Mater. Struct., 2015, 24(6), p 065035.

    Article  Google Scholar 

  34. L. Li, T. Chen, X. Gu, and E. Ghafoori, Heat Activated SMA-CFRP Composites for Fatigue Strengthening of Cracked Steel Plates, J. Compos. Constr., 2020, 24(6), p 04020060.

    Article  CAS  Google Scholar 

  35. F. Taheri-Behrooz, F. Taheri, and R. Hosseinzadeh, Characterization of a Shape Memory Alloy Hybrid Composite Plate Subject to Static Loading, Mater. Des., 2011, 32(5), p 2923–2933.

    Article  CAS  Google Scholar 

  36. K. Yuse and Y. Kikushima, Development and Experimental Considerations on SMA/CFRP Hybrid Actuator for Vibration Control, Sens. Actuators A, 2005, 122(1), p 99–107.

    Article  CAS  Google Scholar 

  37. B. Zheng and M. Dawood, Fatigue Crack Growth Analysis of Steel Elements Reinforced with Shape Memory Alloy (SMA)/Fiber Reinforced Polymer (FRP) Composite Patches, Compos. Struct., 2017, 164, p 158–169.

    Article  Google Scholar 

  38. M. Dawood, M.W. El-Tahan, and B. Zheng, Bond Behavior of Superelastic Shape Memory Alloys to Carbon Fiber Reinforced Polymer Composites, Compos. B Eng., 2015, 77, p 238–247.

    Article  CAS  Google Scholar 

  39. M. El-Tahan and M. Dawood, Bond Behavior of NiTiNb SMA Wires embedded in CFRP Composites, Polym. Compos., 2018, 39(10), p 3780–3791.

    Article  CAS  Google Scholar 

  40. B. Zheng and M. Dawood, Fatigue Strengthening of Metallic Structures with a Thermally Activated Shape Memory Alloy Fiber-Reinforced Polymer Patch, J. Compos. Constr., 2017, 21(4), p 04016113.

    Article  Google Scholar 

  41. Z. Gang and P. Lloyd, Design, Manufacture and Evaluation of Bending Behaviour of Composite beams Embedded with SMA Wires, Compos. Sci. Technol., 2009, 69(13), p 2034–2041.

    Article  Google Scholar 

  42. B.T. Zheng, M. El-Tahan, and M. Dawood, Shape Memory Alloy-Carbon Fiber Reinforced Polymer System for Strengthening Fatigue-Sensitive Metallic Structures, Eng. Struct., 2018, 171, p 190–201.

    Article  Google Scholar 

  43. E. Fritsch, M. Izadi, and E. Ghafoori, Development of Nail-Anchor Strengthening System with Iron-Based Shape Memory Alloy (Fe-SMA) Strips, Constr. Build. Mater., 2019, 229, p 117042.

    Article  CAS  Google Scholar 

  44. A. Hosseini, J. Michels, M. Izadi. and E. Ghafoori, A Comparative Study Between Fe-SMA and CFRP Reinforcements for Prestressed Strengthening of Metallic Structures, Constr. Build. Mater., 2019, 226, p 976–992.

    Article  CAS  Google Scholar 

  45. M. Izadi, A. Hosseini, J. Michels, M. Motavalli. and E. Ghafoori, Thermally Activated Iron-Based Shape Memory Alloy for Strengthening Metallic Girders, Thin Wall. Struct., 2019, 141, p 389–401.

    Article  Google Scholar 

  46. M.R. Izadi, E. Ghafoori, M. Shahverdi, M. Motavalli. and S. Maalek, Development of an Iron-Based Shape Memory Alloy (Fe-SMA) Strengthening System for Steel Plates, Eng. Struct., 2018, 174, p 433–446.

    Article  Google Scholar 

  47. M.R. Izadi, E. Ghafoori, M. Motavalli. and S. Maalek, Iron-Based Shape Memory Alloy for the Fatigue Strengthening of Cracked Steel Plates: Effects of re-activations and loading frequencies, Eng. Struct., 2018, 176, p 953–967.

    Article  Google Scholar 

  48. B. Schranz, C. Czaderski, T. Vogel. and M. Shahverdi, Bond Investigations of Prestressed, Near-Surface-Mounted, Ribbed Memory-Steel Bars with Full Bond Length, Mater. Des., 2020, 196, p 109145.

    Article  CAS  Google Scholar 

  49. R. Suhail, G. Amato. and D. McCrum, Heat-Activated Prestressing of NiTiNb Shape Memory Alloy wires, Eng. Struct., 2020, 206, p 110128.

    Article  Google Scholar 

  50. K. Hong, S. Lee, S. Han. and Y. Yeon, Evaluation of Fe-Based Shape Memory Alloy (Fe-SMA) as Strengthening Material for Reinforced Concrete Structures, Appl. Sci., 2018, 8(5), p 730.

    Article  Google Scholar 

  51. Z.G. Wang, X.T. Zu, X.D. Feng, S. Zhu, J.M. Zhou. and L.M. Wang, Annealing-Induced Evolution of Transformation Characteristics in TiNi Shape Memory Alloys, Phys. B Phys. Condens. Matter, 2004, 353(1–2), p 9–14.

    Article  CAS  Google Scholar 

  52. J. Khalil-Allafi, A. Dlouhy. and G. Eggeler, Ni4Ti3-Precipitation During Aging of NiTi Shape Memory Alloys and its Influence on Martensitic Phase Transformations, Acta Mater., 2002, 50(17), p 4255–4274.

    Article  CAS  Google Scholar 

  53. J.K. Allafi, X. Ren. and G. Eggeler, The Mechanism of Multistage Martensitic Transformations in Aged Ni-rich NiTi Shape Memory Alloys, Acta Mater., 2002, 50(4), p 793–803.

    Article  Google Scholar 

  54. A. Radi, J. Khalil-Allafi, M.R. Etminanfar, S. Pourbabak, D. Schryvers. and B. Amin-Ahmadi, Influence of Stress Aging Process on Variants of Nano-Ni4Ti3 Precipitates and Martensitic Transformation Temperatures in NiTi Shape Memory Alloy, Mater. Des., 2018, 142, p 93–100.

    Article  CAS  Google Scholar 

  55. V. Abbasi-Chianeh and J. Khalil-Allafi, Influence of Applying External stress During Aging on Martensitic Transformation and the Superelastic Behavior of a Ni-rich NiTi Alloy, Mater. Sci. Eng. A, 2011, 528(15), p 5060–5065.

    Article  CAS  Google Scholar 

  56. K. Kazemi-Choobi, J. Khalil-Allafi. and V. Abbasi-Chianeh, Investigation of the Recovery and recrystallization Processes of Ni50.9Ti49.1 Shape Memory Wires Using in Situ Electrical Resistance Measurement, Mater. Sci. Eng. A, 2012, 551, p 122–127.

    Article  CAS  Google Scholar 

  57. G.B. Cho, Y.H. Kim, S.G. Hur, C.A. Yu. and T.H. Nam, Transformation Behavior and Mechanical Properties of a Nanostructured Ti50.0Ni(at.%) Alloy, Metals Mater. Int., 2006, 12(2), p 181–187.

    Article  CAS  Google Scholar 

  58. Y. Liu, Mechanical Stabilisation of Martensite due to Cold Deformation, Mater. Sci. Eng. A, 1999, 273–275, p 668–672.

    Article  Google Scholar 

  59. M. Piao, K. Otsuka, S. Miyazaki. and H. Horikawa, Mechanism of the As Temperature Increase by Pre-deformation in Thermoelastic Alloys, Mater. Trans. JIM, 1993, 34(10), p 919–929.

    Article  CAS  Google Scholar 

  60. E. Choi, T.H. Nam, S.J. Yoon, S.K. Cho. and J. Park, Confining Jackets for Concrete Cylinders Using NiTiNb and NiTi Shape Memory Alloy Wires, Phys. Scr., 2010, 2010(T139), p 014058.

    Article  Google Scholar 

  61. E. Choi, H.V. Ho. and J.S. Jeon, Active Reinforcing Fiber of Cementitious Materials Using Crimped NiTi SMA Fiber for Crack-Bridging and Pullout Resistance, Materials, 2020, 13(17), p 3845.

    Article  CAS  Google Scholar 

  62. Y.F. Li, X.J. Mi, X.Q. Yin. and H.F. **e, Constrained Recovery Properties of NiTi Shape Memory Alloy Wire During Thermal Cycling, J. Alloy. Compd., 2014, 588, p 525–529.

    Article  CAS  Google Scholar 

  63. E. Choi, A. Ostadrahimi. and J.H. Lee, Pullout Resistance of Crimped Reinforcing Fibers Using Cold-Drawn NiTi SMA Wires, Constr. Build. Mater., 2020, 265, p 120858.

    Article  CAS  Google Scholar 

  64. Y.G. Lim and W.J. Kim, Characteristics and Interrelation of Recovery Stress and Recovery Strain of an Ultrafine-Grained Ni-50.2Ti Alloy Processed by High-Ratio Differential Speed Rolling, Smart Mater. Struct., 2017, 26(3), p 035005.

    Article  Google Scholar 

  65. Y. Xu, K. Otsuka, H. Yoshida, H. Nagai, R. Oishi, H. Horikawa. and T. Kishi, A New Method for Fabricating SMA/CFRP Smart Hybrid Composites, Intermetallics, 2002, 10(4), p 361–369.

    Article  CAS  Google Scholar 

  66. J. Font, E. Cesari, J. Muntasell. and J. Pons, Thermomechanical Cycling in Cu–Al–Ni-Based Melt-Spun Shape-Memory Ribbons, Mater. Sci. Eng. A, 2003, 354(1), p 207–211.

    Article  Google Scholar 

Download references

Acknowledgements

Zhigang Wu would like to acknowledge the financial support from the Hundred Talents Program of Guangzhou University (Grant No.: RQ2021016). The authors wish to acknowledge the financial support from the Natural Science Foundation of Guangdong Province (Grant No.: 2018A030313742 and 2020A1515011064) and the Guangzhou University Postgraduate Innovation Ability Training Funding Program (Grant No.: 2019GDJC-M43 and 2020GDJC-M43) and the National Natural Science Foundation of China (Project No. 52178278).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Liu, T., Zhong, M. et al. High Recovery Stress Performance of NiTi Shape Memory Alloy with a Wide Temperature Window. J. of Materi Eng and Perform 32, 10956–10968 (2023). https://doi.org/10.1007/s11665-023-07886-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-07886-6

Keywords

Navigation