Log in

Comparison of Wear Performance of Low Temperature Nitrided and Carburized 316L Stainless Steel under Dry Sliding and Corrosive-Wear Conditions

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

316L austenitic stainless steel was plasma nitrided and carburized at low temperatures to produce precipitation-free nitrided and carburized layers, respectively. The reciprocation sliding wear performances of the untreated, nitrided and carburized specimens were compared under both unlubricated (dry) and corrosive (in 0.5 M H2SO4 solution) conditions. The results show that under dry sliding conditions, both the nitrided layer and carburized layer can offer good wear resistance to 316L steel. The total material loss (TML) of the steel is reduced by more than two orders of magnitude by low temperature nitriding, while low temperature carburizing offers a reduction in TML by an order of magnitude. The better dry sliding wear performance of the nitrided layer is attributed to its much higher hardness as compared to the carburized layer. However, under corrosive-wear conditions in 0.5 M H2SO4 solution, the wear performance of the nitrided layer is significantly deteriorated, with TML 100% higher than that of the untreated 316L steel. On the other hand, the carburized layer can still offer good wear resistance in the corrosive environment, with a reduction in TML of 316L steel by 40%. This research has practical implication that low temperature nitriding is the most suitable for applications in dry and non-corrosive environments, while low temperature carburizing is more suitable for applications in H2SO4-containing corrosive environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References:

  1. Z.L. Zhang and T. Bell, Structure and Corrosion Resistance of Plasma Nitrided Stainless Steel, Surf. Eng., 1985, 1, p 131–136.

    Article  Google Scholar 

  2. H. Dong, S-phase Surface Engineering of Fe-Cr, Co-Cr and Ni-Cr Alloys, Int. Mater. Rev., 2010, 55, p 65–98.

    Article  CAS  Google Scholar 

  3. F. Borgioli, From Austenitic Stainless Steel to Expanded Austenite S-phase: Formation, Characteristics and Properties of an Elusive Metastable Phase, Metals, 2020, 10, p 1–46.

    Article  Google Scholar 

  4. Y. Sun, Production of Nitrogen and Carbon S Phases in Austenitic Stainless Steels by Hybrid Plasma Surface Alloying, Surf. Eng., 2010, 26, p 114–122.

    Article  CAS  Google Scholar 

  5. Y. Li, Y. He, W. Wang, J. Mao, L. Zhang, Y. Zhu, and Q. Ye, Plasma Nitriding of AISI 304 Stainless Steel in Cathodic and Floating Electric Potential: Influence on Morphology, Chemical Characteristics and Tribological Behaviour, J. Mater Eng. Perform., 2018, 27, p 948–960.

    Article  CAS  Google Scholar 

  6. Y.E. Nunez de la Rosa, O.P. Calabokis, P.C. Borges, and V.B. Ballesteros, Effect of low Temperature Plasma Nitriding on corRosion and Surface Properties of Duplex Stainless Steel UNS32205, J. Mater Eng. Perform., 2020, 29, p 2612–2622.

    Article  CAS  Google Scholar 

  7. X. Tao, X. Liu, A. Matthews, and A. Leyland, The Influence of Stacking Fault Energy on Plasticity Mechanisms in Triode-Plasma Nitrided AUSTENITIC Stainless Steels: Implications for the Structure and Stability of Nitrogen-Expanded Austenite, Act Mater., 2019, 164, p 60–75.

    Article  CAS  Google Scholar 

  8. Y. Sun, X.Y. Li, and T. Bell, Low Temperature Plasma Carburising of Austenitic Stainless Steels for Improved Wear and Corrosion Resistance, Surf. Eng., 1999, 15, p 49–54.

    Article  CAS  Google Scholar 

  9. G.Y. Li and M.K. Lei, Microstructure and Properties of Plasma Source Nitrided AISI316 Austenitic Stainless Steel, J. Mater Eng. Perform., 2017, 26, p 418–423.

    Article  CAS  Google Scholar 

  10. M. Gillham, R. van der Jagt, and B. Kolster, New Case Hardening Process for Austenitic Stainless Steels, Mater. World, 1996, 12, p 460–462.

    Google Scholar 

  11. T. Christiansen and M.A.J. Somers, Low Temperature Gaseous Nitriding and Carburising of Stainless Steel, Surf. Eng., 2005, 21, p 445–455.

    Article  CAS  Google Scholar 

  12. T. Christiansen and M.A.J. Somers, On the Crystallographic Structure of S-Phase, Scr. Mater., 2004, 50, p 35–37.

    Article  CAS  Google Scholar 

  13. F. Ernst, D. Li, H. Kahn, G.M. Michal, and A.H. Heuer, The Carbide M7C3 in Low-Temperature-Carburized Austenitic Stainless Steel, Acta Mater., 2011, 59, p 2268–2276.

    Article  CAS  Google Scholar 

  14. Y. Lin, J. Wang, D. Zeng, R. Huang, and H. Fan, Advance Complex Liquid Nitriding of Stainless Steel AISI 321 Surface at 430 °C, J. Mater. Eng. Perform., 2013, 22, p 2567–2573.

    Article  CAS  Google Scholar 

  15. G. Prakash and S.K. Nath, Studies on Enhancement of Silt EROSION Resistance of 13/4 Martensitic Stainless Steel by Low Tow-Temperature Salt Bath Nitriding, J. Mater. Eng. Perform., 2018, 27, p 3206–3216.

    Article  CAS  Google Scholar 

  16. E. Haruman, Y. Sun, A. Triwiyanto, Y.H.P. Manurung, and E.Y. Adesta, An Investigation on Low-Temperature Thermochemical Treatments of Austenitic Stainless Steel in Fluidized Bed Furnace, J. Mater. Eng. Perform., 2012, 21, p 388–394.

    Article  CAS  Google Scholar 

  17. J. Buhagiar, A. Jung, D. Gouriou, B. Mallia, and H. Dong, S-Phase Against S-Phase Tribopairs for Biomedical Applications, Wear, 2013, 301, p 280–289.

    Article  CAS  Google Scholar 

  18. Q. Luo, O. Oluwafemi, M. Kitchen, and S. Yang, Tribological Properties and Wear Mechanisms of DC Pulse Plasma Nitrided Austenitic Stainless Steel in Dry Reciprocating Sliding Tests, Wear, 2017, 376–377, p 1640–1651.

    Article  CAS  Google Scholar 

  19. F.A.P. Fernandes, S.C. Heck, R.G. Pereira, C.A. Picon, P.A.P. Nascente, and L.C. Casteletti, Ion Nitriding of a Superaustenitic Stainless Steel: Wear and Corrosion Characterization, Surf. Coat. Tech., 2010, 204, p 3087–3090.

    Article  CAS  Google Scholar 

  20. K. Kovaci and Y. Secer, Improved Tribological Performance of AISI 316L Stainless Steel by a Combined Surface Treatment: Surface Texturing by Selective Laser Melting and Plasma Nitriding, Surf. Coat. Tech., 2020, 400, p126178.

    Article  Google Scholar 

  21. L. Ceschini, C. Chiavari, E. Lanzoni, and C. Martuni, Low Temperature Carburised AISI 316L Austenitic Stainless Steel: Wear and Corrosion Behaviour, Mater. Des., 2012, 38, p 154–160.

    Article  CAS  Google Scholar 

  22. B. Rayner, X.Y. Li, and H. Dong, Preliminary Study on Plasma Surface Modification of Medical Grade 316LVM and High Nitrogen Austenitic Stainless Steels, Surf. Eng., 2006, 22, p 103–108.

    Article  CAS  Google Scholar 

  23. M.C.S. Duarte, C. Godoy, and J.C.A. Wilson, Analysis of Sliding Wear Tests of Plasma Processed AISI 316L Steel, Surf. Coat. Tech., 2014, 260, p 316–325.

    Article  CAS  Google Scholar 

  24. Y. Sun, Tribocorrosion Behaviour of Low Temperature Plasma Carburized Stainless Steel, Surf. Coat. Tech., 2013, 228, p S342–S348.

    Article  CAS  Google Scholar 

  25. J. Baranowska, S.E. Franklin, and A. Kochmanska, Wear Behaviour of Low-temperature gas Nitrided Austenitic Stainless Steel in Corrosive Liquid Environment, Wear, 2007, 263, p 669–673.

    Article  CAS  Google Scholar 

  26. L. Ceschini, C. Chiavari, A. Marconi, and C. Martini, Influence of the Countermaterial on the Dry Sliding Friction and Wear Behaviour of Low Temperature Carburized AISI316L Steel, Trib. Int., 2013, 67, p 36–43.

    Article  CAS  Google Scholar 

  27. F. Rotundo, L. Ceschini, C. Martini, R. Montanari, and A. Varone, High Temperature Tribological Behaviour and Microstructural Modifications of the Low-Temperature Carburized AISI 316L Austenitic Stainless Steel, Surf. Coat. Tech., 2014, 258, p 772–781.

    Article  CAS  Google Scholar 

  28. T. Bell and Y. Sun, Low Temperature Plasma Nitriding and Carburising of Austenitic Stainless Steels, Heat Treat. Met., 2002, 29(3), p 57–64.

    CAS  Google Scholar 

  29. S. Corujeira Gallo, X. Li, and H. Dong, Dry Sliding Wear of Active Screen Plasma Carburised Austenitic Stainless Steel, Trib. Let., 2012, 45(1), p 153–160.

    Article  CAS  Google Scholar 

  30. M.A. Barcelos, M.V. Barcelos, J. de Sousa, A. Filho, A.R. Franco, and E.A. Vieira, Wear Resistance of AISI 304 Stainless Steel Submitted to Low Temperature Plasma Carburizing, REM – Int. Eng. J., 2017, 70(3), p 293–298. https://doi.org/10.1590/0370-44672016700094

    Article  Google Scholar 

  31. S.W. Watson, F.J. Friedersdorf, B.W. Madsen, and S.D. Gramer, Methods of Measuring Wear-Corrosion Synergism, Wear, 1995, 181–183, p 476–484.

    Article  CAS  Google Scholar 

  32. P.A. Dearnley and G. Aldrich-Smith, Corrosion-Wear Mechanisms of Hard Coated Austenitic 316L Stainless Steel, Wear, 2004, 256, p 491–499.

    Article  CAS  Google Scholar 

  33. P. Ponthiaux, F. Wenger, D. Drees, and J.P. Celis, Electrochemical Techniques for Studying Tribocorrosion Processes, Wear, 2004, 256, p 459–468.

    Article  CAS  Google Scholar 

  34. A.I. Munoz, N. Espallargas,, and S. Mischler Eds., Tribocorrosion, Springer, Berlin, 2020

    Google Scholar 

  35. S. Cao and S. Mischler, A Lubricated Tribocorrosion Model Incorporating Surface Roughness, Biotribocorrosion, 2021, 26, 100181.

    Google Scholar 

  36. Y. Sun and Vipul Rana, Tribocorrosion Behaviour of AISI 304 Stainless Steel in 0.5M NaCl Solution, Mater. Chem. Phys., 2011, 129(1–2), p 138–147. https://doi.org/10.1016/j.matchemphys.2011.03.063

    Article  CAS  Google Scholar 

  37. S.-J. Lee, Y.-M. Lee, and Du. Ming-Feng, The Polishing Mechanism of Electrochemical Mechanical Polishing Technology, J. Mater. Proc. Tech., 2003, 140, p 280–286.

    Article  CAS  Google Scholar 

  38. Y. Nunez, M. Mafra, and R.E. Marales, Pautlo Cesar Borges, Giuseppe Pintaude, The Effect of Plasma Nitriding on the Synergism Between Wear and Corrosion of SAF 2205 Duplex Stainless Steel, Ind. Lubr. Tribol., 2020, 72(9), p 1117–1122.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Bailey, R. Comparison of Wear Performance of Low Temperature Nitrided and Carburized 316L Stainless Steel under Dry Sliding and Corrosive-Wear Conditions. J. of Materi Eng and Perform 32, 1238–1247 (2023). https://doi.org/10.1007/s11665-022-07182-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07182-9

Keywords

Navigation