Log in

Investigation on the Microstructure and Mechanical Properties of Stud Welded Joints of Cu/304 Austenitic Stainless Steel under Different Welding Voltages

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this study, stud welding of 304 austenitic stainless steel stud–copper plate was carried out at seventeen different welding voltages between 50 and 130 V. The microstructure, mechanical properties, electrical properties and fracture modes of the welded joints were investigated. Optical microscopy (OM), scanning electron microscopy (SEM), energy spectrometry (EDS) and x-ray diffractometry (XRD) were used to analyze the microstructure of the weld metal. The mechanical properties of the welded joints were examined by tensile and microhardness tests. The fracture pattern was confirmed by SEM after the tensile test. A DC resistance meter is used to test the change in resistance of the weld metal. The results showed that the increase in the welding voltage leads to the increase in the welded joint depth of fusion and tensile load. The elements within the weld metal were not uniformly distributed. The microhardness and resistance values of the weld metal were elevated compared to the copper plate, with an average microhardness value of 339 HV. In brief, the optimum welding voltage was determined to be 105-120 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H.S. Oh, J.H. Lee, and C.D. Yoo, Simulation of Capacitor Discharge Stud Welding Process and Void Formation, Sci. Technol. Weld. Join., 2007, 12(3), p 274–281.

    Article  Google Scholar 

  2. M.H. Abass, A.N. Abood, M. Alali, S.K. Hussein, and S.A. Nawi, Mechanical Properties and Microstructure Evolution in Arc Stud Welding Joints of AISI 1020 with AISI 316L and AISI 304, Metall. Microstruct. Anal., 2021, 10, p 321–333.

    Article  CAS  Google Scholar 

  3. Ş Talaş, M. Doğan, M. Çakmakkaya, and A. Kurt, The Effect of Voltage on the Arc Stud Welding of Microwave Sintered Fe+Al Powder Mixture, Mater. Res., 2014, 17(3), p 632–637.

    Article  Google Scholar 

  4. W.K. Wang, J.X. Zhang, L.J. Zhang, Y. Liu, and Q.B. Zhang, Microstructure and Local Mechanical Properties of a Dissimilar Metal Welded Joint with Buttering Layer in Steam Turbine Rotor, Mater. Sci. Eng. A, 2019, 747, p 244–254.

    Article  CAS  Google Scholar 

  5. Q.L. Sun, X. Nie, M.D. Denavit, J.S. Fan, and W. Liu, Monotonic and Cyclic Behavior of Headed Steel Stud Anchors Welded through Profiled Steel Deck, J. Constr. Steel Res., 2019, 157, p 121–131.

    Article  Google Scholar 

  6. D. Kruszewski, K. Wille, and A.E. Zaghi, Push-Out Behavior of Headed Shear Studs Welded on Thin Plates and Embedded in UHPC, Eng. Struct., 2018, 173, p 429–441.

    Article  Google Scholar 

  7. T. Molkens, J. Dobrićc, and B. Rossi, Shear Resistance of Headed Shear Studs Welded on Welded Plates in Composite Floors, Eng. Struct., 2019, 197, p 109412.

    Article  Google Scholar 

  8. S.H.M. Anijdan, M. Sabzi, M. Ghobeiti-Hasab, and A. Roshan-Ghiyas, Optimization of Spot Welding Process Parameters in Dissimilar Joint of Dual Phase Steel DP600 and AISI 304 stainless steel to achieve the highest level of shear-tensile strength, Mater. Sci. Eng. A, 2018, 726, p 120–125.

    Article  Google Scholar 

  9. M. Sabzi, A. Kianpour-Barjoie, M. Ghobeiti-Hasab, and S.M. DezfuliI, Effect of High-Frequency Electric Resistance Welding (HF-ERW) Parameters on Metallurgical Transformations and Tensile Properties of API X52 Microalloy Steel Welding Joint, Arch. Metall. Mater, 2018, 63, p 1693–1699.

    CAS  Google Scholar 

  10. E.N. Abbas, S. Omran, M. Alali, M.H. Abass, and A.N. Abood, Dissimilar Welding of AISI 309 Stainless Steel to AISI 1020 Carbon Steel Using Arc Stud Welding, Int. Conf. Adv. Sci. Eng., 2018, 2018, p 462–467.

    Google Scholar 

  11. M. Sabzia and S.M. Dezfuli, Post Weld Heat Treatment of Hypereutectoid Hadfield Steel: Characterization and Control of Microstructure, Phase Equilibrium, Mechanical Properties and Fracture Mode of Welding Joint, J. Manuf. Process, 2018, 34, p 313–328.

    Article  Google Scholar 

  12. T.R. Tabrizi, M. Sabzi, S.H. Anijdan, A.R. Eivani, N. Park, and H.R. Jafarian, Comparing the Effect of Continuous and Pulsed Current in the GTAW Process of AISI 316L Stainless Steel Welded Joint: Microstructural Evolution, Phase Equilibrium, Mechanical Properties and Fracture Mode, J. Mater. Res. Technol., 2021, 15, p 199–212.

    Article  Google Scholar 

  13. M. Sabzi, S.M. Dezfuli, and S.M. Far, Deposition of Ni-Tungsten Carbide Nanocomposite Coating by TIG Welding: Characterization and Control of Microstructure and Wear/Corrosion Responses, Ceram. Int., 2018, 44, p 22816–22829.

    Article  CAS  Google Scholar 

  14. H. Ochia, K. Morikawab, T. Moritanic, Y. Issiki, and G. Kawaie, Strength of 5083 Aluminium Alloy Stud Joints, Strength, Fract. Complex., 2014, 8(3), p 145–151.

    Article  Google Scholar 

  15. N.D. Stepanov, A.V. Kuznetsov, G.A. Salishchev, N.E. Khlebova, and V.I. Pantsyrny, Evolution of Microstructure and Mechanical Properties in Cu-14%Fe Alloy during Severe Cold Rolling, Mater. Sci. Eng. A, 2013, 564, p 264–272.

    Article  CAS  Google Scholar 

  16. X.P. Lu, D.W. Yao, Y. Chen, L.T. Wang, A.P. Dong, L. Meng, and J.B. Liu, Microstructure and Hardness of Cu-12% Fe Composite at Different Drawing Strains, J. Zhejiang Univ. Sci. A, 2014, 15, p 149–156.

    Article  CAS  Google Scholar 

  17. Z.W. Wu, Y. Chen, L. Meng, and Z. Zhang, Effect of Fe Content on the Microstructure and Mechanical and Electrical Properties of Cu-Fe In Situ Composites, J. Mater. Eng. Perform., 2021, 30, p 5939–5946.

    Article  CAS  Google Scholar 

  18. M. Sabzi and M. Farzam, Hadfield Manganese Austenitic Steel: A Review of Manufacturing Processes and Properties, Mater. Res. Exp., 2019, 6, p 1–15.

    Google Scholar 

  19. M. Sabzi and S.M. Dezfuli, Drastic Improvement in Mechanical Properties and weldability of 316L Stainless Steel Weld Joints by using Electromagnetic Vibration during GTAW Process, J. Manuf. Process., 2018, 33, p 74–85.

    Article  Google Scholar 

  20. F. H. Hameed, M.T. Mohamed, S.A. Nawi, and J. Gattmah, Dissimilar Arc Stud Welding AISI 304/AISI 1008: Mechanical Properties, IOP Conf. Series: Mater. Sci. Eng. 1079, p 1-9 (2021)

  21. M. Sabzi, S.H. Mousavi Anijdan, A.R. Eivani, N. Park, and H.R. Jafarian, The effect of Pulse Current Changes in PCGTAW on Microstructural Evolution, Drastic Improvement in Mechanical Properties, and Fracture Mode of Dissimilar Welded Joint of AISI 316L-AISI 310S Stainless Steels, Mater. Sci. Eng. A, 2021, 823, p 141700. https://doi.org/10.1016/j.msea.2021.141700

    Article  CAS  Google Scholar 

  22. Y. Haradaa, Y. Sada, and S. Kumai, Joining Steel Studs and Steel Plates by Solid-State Stud Welding and Estimation of Temperature Near the Joint Interface, J. Manuf. Process., 2016, 23, p 75–82.

    Article  Google Scholar 

  23. Y. Haradaa, Y. Sada, and S. Kumai, Dissimilar Joining of AA2024 Aluminium Studs and AZ80 Magnesium Plates by High-Speed Solid-State Welding, J. Mater. Process. Technol., 2014, 214, p 477–484.

    Article  Google Scholar 

  24. Y.H. Wu, Y. Mao, L. Fu, D.Q. Qin, and X. **ao, Dual Laser-Beam Synchronous Self-Fusion Welding of Ti–6Al-4V Titanium Alloys T-Joints Based on Prefabricated Welding Materials, J. Mater. Res. Technol., 2022, 17, p 2560–2576.

    Article  CAS  Google Scholar 

  25. A.B. Basyigit and A. Kurt, Investigation of the Weld Properties of Dissimilar S32205 Duplex Stainless Steel with AISI 304 Steel Joints Produced by Arc Stud Welding, Metals, 2017, 7(7), p 1–11.

    Google Scholar 

  26. Ş Talaş, M. Doğan, M. Çakmakkaya, and A. Kurt, The Effect of Voltage on the Arc Stud Welding of Microwave Sintered Fe+Al Powder Mixture, Mater. Res., 2014, 17(3), p 632–637. https://doi.org/10.1590/S1516-14392014005000081

    Article  CAS  Google Scholar 

  27. G. Mou, X.M. Hua, Y. Huang, C. Shen, and M. Wang, Study on the Microstructure Optimization and Mechanical Properties of Dissimilar TC4-304L Arc-Brazing Joints, Mater. Sci. Eng. A, 2020, 788, p 139566.

    Article  CAS  Google Scholar 

  28. S.B. Luo, W.L. Wang, J. Chang, Z.C. **a, and B. Wei, A Comparative Study of Dendritic Growth Within Undercooled Liquid Pure Fe And Fe50Cu50 Alloy, Acta. Mater., 2014, 69, p 355–364.

    Article  CAS  Google Scholar 

  29. C.P. Wang, X.J. Liu, and R. Kainuma, Formation of Core-Type Macroscopic Morphologies in Cu−Fe Base Alloys with Liquid Miscibility Gap, Metall. Mater. Trans. A, 2004, 35, p 1243–1253.

    Article  Google Scholar 

  30. D. Bombac and G. Kugler, Influence of Diffusion Asymmetry on Kinetic Pathways in Binary Fe-Cu Alloy: A Kinetic Monte Carlo Study, J. Mater. Eng. Perform., 2015, 24, p 2382–2389.

    Article  CAS  Google Scholar 

  31. H.X. Yin, Y. Wu, Y. Huang, G.Z. Zhang, X. Li, P.P. Zhang, and A.M. Zhao, The Initial Precipitation Behavior of Copper in Ferritic Stainless Steel, J. Mater. Eng. Perform., 2020, 29, p 6494–6502.

    Article  CAS  Google Scholar 

  32. M. Wang, Y.B. Jiang, Z. Li, Z. **ao, S. Gong, W.Y. Qiu, and Q. Lei, Microstructure Evolution and Deformation Behaviour of Cu-10wt%Fe Alloy During Cold Rolling, Mater Sci Eng. A, 2020, 801, p 140397.

    Google Scholar 

  33. Y.B. Jeong, H.R. Jo, H.J. Park, H. Kato, and K.B. Kim, Mechanical Properties and Microstructural Change in (Cu-Fe) Immiscible Metal Matrix Composite: Effect of Mg on Secondary Phase Separation, J. Mater. Res. Technol., 2020, 9(6), p 15989–15995.

    Article  CAS  Google Scholar 

  34. Y.B. Jeong, H.R. Jo, H.J. Park, H. Kato, and K.B. Kim, A Study on the Micro-Evolution of Mechanical Property and Microstructures in (Cu-30Fe)-2X Alloys with the Addition of Minor Alloying Elements, J. Alloy. Compd., 2019, 786, p 341–345.

    Article  CAS  Google Scholar 

  35. S.Z. Han, J.H. Lee, S.H. Lim, J.H. Ahn, K.H. Kim, and S.S. Kim, Optimization of Conductivity and Strength in Cu-Ni-Si Alloys by Suppressing Discontinuous Precipitation, Met. Mater. Int., 2016, 22, p 1049–1054.

    Article  CAS  Google Scholar 

  36. H.G. Kim, S.Z. Han, K.J. Euh, and S.H. Lim, Effects of C Addition and Thermo-Mechanical Treatments on Microstructures and Properties of Cu-Fe-P Alloys, Mater. Sci. Eng. A, 2011, 530, p 652–658.

    Article  CAS  Google Scholar 

  37. E.Y. Lee, S.Z. Han, J. Lee, K.J. Euh, S.H. Lim, and S.S. Kim, Effect of Ti Addition on Tensile Properties of Cu-Ni-Si Alloys, Met. Mater. Int, 2011, 17, p 569–576.

    Article  CAS  Google Scholar 

  38. H. Fernee, J. Nairn, and A. Atrens, Precipitation Hardening of Cu-Fe-Cr Alloys Part II Microstructural Characterisation, J. Mater. Sci, 2001, 36, p 2721–2741.

    Article  CAS  Google Scholar 

  39. Y.B. Jeong, S.H. Hong, J.T. Kim, H.J. Park, Y.S. Kim, and H.D. Lee, Investigation on the Relationship between Transition Energy and the Color Change of Cu-M Alloys, Met. Mater. Int., 2019, 25, p 539–545.

    Article  CAS  Google Scholar 

  40. J. Zou, D.P. Lu, Q.F. Fu, K.M. Liu, and J. Jiang, Microstructure and Properties of Cu-Fe Deformation Processed In-Situ Composite, Vacuum, 2019, 167, p 54–58.

    Article  CAS  Google Scholar 

  41. H.R. Jo, J.T. Kim, S.H. Hong, Y.S. Kim, H.J. Park, W.J. Park, J.M. Park, and K.B. Kim, Effect of Silicon on Microstructure and Mechanical Properties of Cu-Fe Alloys, J. Alloy. Compd., 2017, 707, p 184–188.

    Article  CAS  Google Scholar 

  42. M.X. Yang, Y. Pan, F.P. Yuan, Y.T. Zhu, and X.L. Wu, Back Stress Strengthening and Strain Hardening in Gradient Structure, Mater. Res. Lett., 2016, 4(3), p 145–151.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of Gansu Province, China (No. 20JR5RA416, 21JR7RA308) and the National Natural Science Foundation of China (No.51605384).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **long Zhao.

Ethics declarations

Conflicts of interest

The authors declared that they have no conflicts of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Lu, X., Wang, K. et al. Investigation on the Microstructure and Mechanical Properties of Stud Welded Joints of Cu/304 Austenitic Stainless Steel under Different Welding Voltages. J. of Materi Eng and Perform 32, 613–623 (2023). https://doi.org/10.1007/s11665-022-07123-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07123-6

Keywords

Navigation