Log in

Application of Taguchi Method Design to Investigate Tribological Performance of Laser-Surface-Textured 316L Austenitic Stainless Steel

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, 316L austenitic stainless steel (ASS) was subjected to laser surface texturing to improve its tribological performance. The effects of surface texture parameters and service conditions on the tribological performance of laser-surface-textured 316L ASS were investigated through Taguchi’s orthogonal arrays. Four main factors were designed in the orthogonal array, namely texture diameter, texture interval, load, and sliding speed. Each factor was with three levels. The comprehensive scoring method was used to analyze the influence of factors and levels on the signal-to-noise ratios and the mean values of the corresponding indicators (wear rate and friction coefficient). Meanwhile, the significance of each factor on the response variable was calculated by analysis of variance (ANOVA). The results indicated that the order in which factors affect the tribological performance was as follows: interval>load>diameter>speed and the optimal parameter combination was 400 μm (diameter), 1200 μm (interval), 10 N (load), and 1500 r/min (speed). The interval had a greater influence of 29.88%, the load influenced 21.54%, and the diameter influenced 8.65%. Finite element analysis results showed that the optimized parameter combination obtained the minimum surface stress. With the increase in the texture interval, the surface stress decreased gradually.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Meng, J.X. Deng, R. Duan, Y.Y. Liu, and G.L. Zhang, Modifying Tribological Performances of AISI 316 Stainless Steel Surfaces by Laser Surface Texturing and Various Solid Lubricants, Opt. Laser Technol., 2019, 109, p 401–411.

    Article  CAS  Google Scholar 

  2. Y.T. Shang, Y.P. Yuan, D.F. Li, Y.S. Li, and J.M. Chen, Effects of scanning Speed on in Vitro Biocompatibility of 316L Stainless Steel Parts Elaborated by Selective Laser Melting, Int. J. Adv. Manuf. Technol., 2017, 92, p 4379–4385.

    Article  Google Scholar 

  3. L. Zhang, N. Lin, J. Zou, X. Lin, Z. Liu, S. Yuan, Y. Yu, Z. Wang, Q. Zeng, W. Chen, L. Tian, L. Qin, R. **e, B. Li, Z. Wang, B. Tang, and Y. Wu, Super-hydrophobicity and Corrosion Resistance of Laser Surface Textured AISI 304 Stainless Steel Decorated with Hexadecyltrimethoxysilane (HDTMS), Opt. Laser Technol., 2020, 127, p 106146.

    Article  CAS  Google Scholar 

  4. X.M. He, X.B. Liu, M.D. Wang, M.S. Yang, S.H. Shi, G.Y. Fu, and S.F. Chen, Elevated Temperature Dry Sliding Wear Behavior of Nickel-Based Composite Coating on Austenitic Stainless Steel Deposited by a Novel Central Hollow Laser Cladding, Appl. Surf. Sci., 2011, 258, p 535–541.

    Article  CAS  Google Scholar 

  5. L.P. Ward, K.P. Purushotham, and R.R. Manory, MEVVA Ion Implantation of TiCN Coatings; Structural and Tribological Properties, Nucl. Instrum. Meth. B., 2019, 449, p 40–48.

    Article  CAS  Google Scholar 

  6. K. Zhang, J. Deng, S. Lei, and X. Yu, Effect of Micro/Nano-Textures and Burnished MoS2 Addition on the Tribological Properties of PVD TiAlN Coatings against AISI 316 stainless Steel, Surf. Coat. Tech., 2016, 291, p 382–395.

    Article  CAS  Google Scholar 

  7. E. Liu, Y. Zhang, X. Wang, Z. Zeng, H. Du, and H. Qin, Tribocorrosion Behaviors of Thermal Spraying WC/Ni60 Coated 316L Stainless Steel in Artificial Seawater, Ind. Lubr. Tribol., 2019, 71, p 741–748.

    Article  Google Scholar 

  8. N. Lin, L. Zhang, J. Zou, Q. Liu, S. Yuan, L. Zhao, Y. Yu, Z. Liu, Q. Zeng, X. Liu, Z. Wang, B. Tang, and Y. Wu, A Combined Surface Treatment of Surface Texturing-Double Glow Plasma Surface Titanizing on AISI 316 Stainless Steel to Combat Surface Damage: Comparative Appraisals of Corrosion Resistance and Wear Resistance, Appl. Surf. Sci., 2019, 493, p 747–765.

    Article  CAS  Google Scholar 

  9. X.B. Liu, C. Zheng, Y.F. Liu, J.W. Fan, M.S. Yang, X.M. He, M.D. Wang, H.B. Yang, and L.H. Qi, A Comparative Study of Laser Cladding High Temperature Wear-Resistant Composite Coating with the Addition of Self-lubricating WS2 and WS2/(Ni-P) Encapsulation, J. Mater. Process Tech., 2013, 213, p 51–58.

    Article  CAS  Google Scholar 

  10. X.B. Liu, H.Q. Liu, Y.F. Liu, X.M. He, C.F. Sun, M.D. Wang, H.B. Yang, and L.H. Qi, Effects of Temperature and Normal Load on Tribological Behavior of Nickel-Based High Temperature Self-Lubricating Wear-Resistant Composite Coating, Compos. Part B-Eng., 2013, 53, p 347–354.

    Article  CAS  Google Scholar 

  11. M.S. Yang, X.B. Liu, J.W. Fan, X.M. He, S.H. Shi, G.Y. Fu, M.D. Wang, and S.F. Chen, Microstructure and Wear Behaviors of Laser Clad NiCr/Cr3C2-WS2 High Temperature Self-Lubricating Wear-Resistant Composite Coating, Appl. Surf. Sci., 2012, 258, p 3757–3762.

    Article  CAS  Google Scholar 

  12. C.S. Ouyang, X.B. Liu, Y.S. Luo, J. Liang, M. Wang, and D.Q. Chen, Preparation and High Temperature Tribological Properties of Laser In-Situ Synthesized Self-Lubricating Composite Coating on 304 Stainless Steel, J. Mater. Res. Technol., 2020, 9, p 7034–7046.

    Article  CAS  Google Scholar 

  13. C. Gachot, A. Rosenkranz, S.M. Hsu, and H.L. Costa, A Critical Assessment of Surface Texturing for Friction and Wear Improvement, Wear, 2017, 372, p 21–41.

    Article  Google Scholar 

  14. N.M. Lin, D.L. Li, J.J. Zou, R.Z. **e, Z.H. Wang, and B. Tang, Surface Texture-Based Surface Treatments on Ti6Al4V Titanium Alloys for Tribological and Biological Applications: A Mini Review, Materials, 2018, 11, p 487–514.

    Article  Google Scholar 

  15. I. Etsion and E. Sher, Improving Fuel Efficiency with Laser Surface Textured Piston Rings, Tribol. Int., 2009, 42, p 542–547.

    Article  CAS  Google Scholar 

  16. M.S. Suh, Y.H. Chae, S.S. Kim, T. Hinoki, and A. Kohyama, Effect of Geometrical Parameters in Micro-Grooved Crosshatch Pattern under Lubricated Sliding Friction, Tribol. Int., 2010, 43, p 1508–1517.

    Article  CAS  Google Scholar 

  17. B.F. He, J. Petzing, P. Webb, and R. Leach, Improving Copper Plating Adhesion on Glass Using Lase Machining Techniques and Areal Surface Texture Parameters, Opt. Laser. Eng., 2015, 75, p 39–47.

    Article  Google Scholar 

  18. L.R.R. da Silva and H.L. Costa, Tribological Behavior of Gray Cast Iron Textured by Maskless Electrochemical Texturing, Wear, 2017, 376, p 1601–1610.

    Article  Google Scholar 

  19. Z.K. Li, J.C. Bai, and J.J. Tang, Micro-EDM Method to Fabricate Three-Dimensional Surface Textures Used as SERS-Active Substrate, Appl. Surf. Sci., 2018, 458, p 810–818.

    Article  CAS  Google Scholar 

  20. S. Xu, S.O.J. An, D. Atsushi, and S. Castagne, Development of Low-Cost Deformation-Based Micro Surface Texturing System for Friction Reduction, Int. J. Precis. Eng. Manuf., 2016, 17, p 1059–1065.

    Article  Google Scholar 

  21. X. Su, L.P. Shi, W. Huang, and X.L. Wang, A Multi-Phase Micro-Abrasive Jet Machining Technique for the Surface Texturing of Mechanical Seals, Int. J. Adv. Manuf. Technol., 2016, 86, p 2047–2054.

    Article  Google Scholar 

  22. H.L. Costa and I.M. Hutchings, Some Innovative Surface Texturing Techniques for Tribological Purposes. Proc. Inst, Mech. Eng. Part J. -J. Eng. Tribol., 2014, 229, p 429–448.

    Google Scholar 

  23. B. Podgornik, L.M. Vilhena, M. Sedlacek, Z. Rek, and I. Zun, Effectiveness and Design of Surface Texturing for Different Lubrication Regimes, Meccanica, 2012, 47, p 1613–1622.

    Article  Google Scholar 

  24. Y.C. Guan, F.F. Luo, G.C. Lim, M.H. Hong, H.Y. Zheng, and B.J. Qi, Fabrication of Metallic Surfaces with Long-Term Superhydrophilic Property Using One-Stop Laser Method, Mater. Des., 2015, 78, p 19–24.

    Article  CAS  Google Scholar 

  25. A. Ghiotti, S. Bruschi, F. Medea, and A. Hamasaiid, Tribological Behavior of High Thermal Conductivity Steels for Hot Stam** Tools, Tribol. Int., 2016, 97, p 412–422.

    Article  CAS  Google Scholar 

  26. D.Q. He, S.X. Zheng, J.B. Pu, G.G. Zhang, and L.T. Hu, Improving Tribological Properties of Titanium Alloys by Combining Laser Surface Texturing and Diamond-Like Carbon Film, Tribol. Int., 2015, 82, p 20–27.

    Article  CAS  Google Scholar 

  27. A. Siddiqui and A.K. Dubey, Recent Trends in Laser Cladding and Surface Alloying, Opt. Laser Technol., 2021, 134, p 106619.

    Article  CAS  Google Scholar 

  28. D.Y. Zhang, F.F. Zhao, Y. Li, P.Y. Li, Q.F. Zeng, and G.N. Dong, Study on Tribological Properties of Multi-Layer Surface Texture on Babbitt Alloys Surface, Appl. Surf. Sci., 2016, 390, p 540–549.

    Article  CAS  Google Scholar 

  29. D.Z. Segu and P. Hwang, Friction Control by Multi-Shape Textured Surface under Pin-on-Disc Test, Tribol. Int., 2015, 91, p 111–117.

    Article  Google Scholar 

  30. D.Z. Segu, S.G. Choi, J.H. Choi, and S.S. Kim, The Effect of Multi-Scale Laser Textured Surface on Lubrication Regime, Appl. Surf. Sci., 2013, 270, p 58–63.

    Article  CAS  Google Scholar 

  31. J. Hu and H.B. Xu, Friction and Wear Behavior Analysis of the Stainless Steel Surface Fabricated by Laser Texturing Underwater, Tribol. Intl., 2016, 102, p 371–377.

    Article  Google Scholar 

  32. Y.H. Zhong, L. Zheng, Y.H. Gao, and Z.N. Liu, Numerical Simulation and Experimental Investigation of Tribological Performance on Bionic Hexagonal Textured Surface, Tribol. Intl., 2019, 129, p 151–161.

    Article  Google Scholar 

  33. L.J. Yang, Y. Ding, B. Cheng, J.T. He, G.W. Wang, and Y. Wang, Investigations on Femtosecond Laser Modified Micro-Textured Surface with Anti-Friction Property on Bearing Steel GCr15, Appl. Surf. Sci., 2018, 434, p 831–842.

    Article  CAS  Google Scholar 

  34. S. Wos, W. Koszela, and P. Pawlus, The Effect of Both Surfaces Textured on Improvement of Tribological Properties of Sliding Elements, Tribol. Intl., 2017, 113, p 182–188.

    Article  CAS  Google Scholar 

  35. W. Tang, Y.K. Zhou, H. Zhu, and H.F. Yang, The Effect of Surface Texturing on Reducing the Friction and Wear of Steel under Lubricated Sliding Contact, Appl. Surf. Sci., 2013, 273, p 199–204.

    Article  CAS  Google Scholar 

  36. B. Maazinejad, O. Mohammadnia, G.A.M. Ali, A.S.H. Makhlouf, M.N. Nadagouda, M. Sillanpää, A.M. Asiri, S. Agarwal, V.K. Gupta, and H. Sadegh, Taguchi L9 (34) Orthogonal Array Study Based on Methylene Blue Removal by Single-Walled Carbon Nanotubes-Amine: Adsorption Optimization using the Experimental Design Method, Kinetics, Equilibrium and Thermodynamics, J. Mol. Liq., 2020, 298, p 1–8.

    Article  Google Scholar 

  37. L. Han, S. Wang, and C. Zhang, A Partial Lubrication Model Between Valve Plate and Cylinder Block in Axial Piston Pumps, P. I. Mech. Eng. C-J Mec., 2015, 229, p 3201–3217.

    Article  Google Scholar 

  38. J. Zhang, C. Yuan, B. Xu, Q. Chao, Y. Zhu, and X. Huang, Effect of Surface Texture on Wear Reduction of the Tilting Cylinder and the Valve Plate for a High-Speed Electro-Hydrostatic Actuator Pump, Wear, 2018, 414, p 68–78.

    Article  Google Scholar 

  39. Q. Lv, D. Wang, E. Shiju, H. Chen, and B. Hu, Study on the Effects of the Textured Surface to Improve the Performance of Cylinder Block/Valve Plate Interfaces, AIP Adv., 2019, 9, p 045128.

    Article  Google Scholar 

  40. N.M. Lin, Q. Liu, J.J. Zou, D.L. Li, S. Yuan, Z. Wang, and B. Tang, Surface Damage Mitigation of Ti6Al4V Alloy Via Thermal Oxidation for Oil and Gas Exploitation Application: Characterization of the Microstructure and Evaluation of the Surface Performance, RSC Adv., 2017, 7, p 13517–13535.

    Article  CAS  Google Scholar 

  41. A. Patnaik, A. Satapathy, S.S. Mahapatra, and R.R. Dash, A Modeling Approach for Prediction of Erosion Behavior of Glass Fiber-Polyester Composites, J. Polym. Res., 2008, 15, p 147–160.

    Article  CAS  Google Scholar 

  42. R. Sahoo, B.B. Jha, and T.K. Sahoo, Experimental Study on the Effect of Microstructure on Dry Sliding Wear Behavior of Titanium Alloy Using Taguchi Experimental Design, Tribol. T., 2014, 57, p 216–224.

    Article  CAS  Google Scholar 

  43. Y.J. Yang, H.Y. Lin, C. Yang, S.W. Yang, X.S. **a, and Y.J. Luo, Optimization of process parameters of fused deposition modeling based on orthogonal experiment, China Plast., 2019, 33, p 69–75. (in Chinese)

    Google Scholar 

  44. A.F. Yetim, A. Celik, and A. Alsaran, Improving Tribological Properties of Ti6Al4V Alloy with Duplex Surface Treatment, Surf. Coat. Tech., 2010, 205, p 320–324.

    Article  CAS  Google Scholar 

  45. A. Biswas and J.D. Majumdar, Surface Characterization and Mechanical Property Evaluation of Thermally Oxidized Ti-6Al-4V, Mater. Charact., 2009, 60, p 513–518.

    Article  CAS  Google Scholar 

  46. N.M. Lin, F.Q. **e, X.Q. Wu, and W. Tian, Influence of Process Parameters on Thickness and Wear Resistance of Rare Earth Modified Chromium Coatings on P110 Steel Synthesized by Pack Cementation, J. Rare Earth., 2011, 29, p 396–400.

    Article  CAS  Google Scholar 

  47. S. Koksal, F. Ficici, R. Kayikci, and O. Savas, Experimental Optimization of Dry Sliding Wear Behavior of in Situ AlB2/Al Composite Based on Taguchi’s Method, Mater. Design., 2012, 42, p 124–130.

    Article  CAS  Google Scholar 

  48. S. Yuan, N.M. Lin, J.J. Zou, X.Z. Lin, Z.Q. Liu, Y. Yu, Z.X. Wang, Q.F. Zeng, W.G. Chen, L.H. Tian, L. Qin, R.Z. **e, B.Q. Li, H.X. Zhang, Z.H. Wang, B. Tang, and Y.C. Wu, In-Situ Fabrication of Gradient Titanium Oxide Ceramic Coating on Laser Surface Textured Ti6Al4V Alloy with Improved Mechanical Property and Wear Performance, Vacuum, 2020, 176, p 1–16.

    Article  Google Scholar 

  49. S. Yuan, N.M. Lin, J.J. Zou, Z.Q. Liu, Z.X. Wang, L.H. Tian, L. Qin, H.X. Zhang, Z.H. Wang, B. Tang, and Y.C. Wu, Effect of Laser Surface Texturing (LST) on Tribological Behavior of Double Glow Plasma Surface Zirconizing Coating on Ti6Al4V Alloy, Surf. Coat. Tech., 2019, 368, p 97–109.

    Article  CAS  Google Scholar 

  50. J.D. Guo, Y. Li, H.L. Lu, L.G. Qin, Y. Li, and G.N. Dong, An Effective Method of Edge Deburring for Laser Surface Texturing of Co–Cr–Mo Alloy, Int. J. Adv. Manuf. Technol., 2017, 94, p 1491–1503.

    Article  Google Scholar 

  51. S.H. Kim, S.H. Jeong, T.H. Kim, J.H. Choi, S.H. Cho, B.S. Kim, and S.W. Lee, Effects of Solid Lubricant and Laser Surface Texturing on Tribological Behaviors of Atmospheric Plasma Sprayed Al2O3-ZrO2 Composite Coatings, Ceram. Int., 2017, 43, p 9200–9206.

    Article  CAS  Google Scholar 

  52. M. Sedlacek, B. Podgornik, A. Ramalho, and D. Cesnik, Influence of Geometry and the Sequence of Surface Texturing Process on Tribological Properties, Tribol. Int., 2017, 115, p 268–273.

    Article  CAS  Google Scholar 

  53. S.S. Kim, H.G. Lee, and D.G. Lee, Tribological Behaviors of Carbon Composite Grooved Surfaces, Compos. Struct., 2005, 71, p 238–245.

    Article  Google Scholar 

  54. N.M. Lin, Q. Liu, J.J. Zou, J.W. Guo, D.L. Li, S. Yuan, Y. Ma, Z. Zhang, Z. Wang, and B. Tang, Surface Texturing-Plasma Nitriding Duplex Treatment for Improving Tribological Performance of AISI 316 Stainless Steel, Materials, 2016, 9, p 875–900.

    Article  Google Scholar 

  55. Y.Q. **ng, J.X. Deng, X.T. Feng, and S. Yu, Effect of Laser Surface Texturing on Si3N4/TiC Ceramic Sliding against Steel under Dry Friction, Mater. Design., 2013, 52, p 234–245.

    Article  CAS  Google Scholar 

  56. L.B. Lu, Z. Zhang, Y.C. Guan, and H.Y. Zheng, Comparison of the Effect of Typical Patterns on Friction and Wear Properties of Chromium Alloy Prepared by Laser Surface Texturing, Opt. Laser Technol., 2018, 106, p 272–279.

    Article  CAS  Google Scholar 

  57. U. Sudeep, N. Tandon, and R.K. Pandey, Vibration Studies of Lubricated Textured Point Contacts of Bearing Steels Due to Surface Topographies: Simulations and Experiments, Tribol. Int., 2016, 102, p 265–274.

    Article  Google Scholar 

  58. M.R. Ripoll, B. Podgornik, and J. Vizintin, Finite Element Analysis of Textured Surfaces under Reciprocating Sliding, Wear, 2011, 271, p 952–959.

    Article  CAS  Google Scholar 

  59. G.S. Joshi, C. Putignano, C. Gaudiuso, T. Stark, T. Kiedrowski, A. Ancona, and G. Carbone, Effects of the Micro Surface Texturing in Lubricated Non-Conformal Point Contacts, Trib. Int., 2018, 127, p 296–301.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 51501125 and 51975396), the China Postdoctoral Science Foundation (No. 2016M591415), the Aeronautical Science Foundation of China (No. 20200029029001), the Natural Science Foundation of Shanxi Province (No. 201901D111063), the Transformation of Scientific and Technological Achievements Program of Higher Education Institutions in Shanxi (No. 2020CG020) and Research Project Supported by Shanxi Scholarship Council of China (No. 2020-035).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naiming Lin or Yucheng Wu.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Yuan, S., Lin, N. et al. Application of Taguchi Method Design to Investigate Tribological Performance of Laser-Surface-Textured 316L Austenitic Stainless Steel. J. of Materi Eng and Perform 32, 475–490 (2023). https://doi.org/10.1007/s11665-022-07107-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07107-6

Keywords

Navigation