Log in

Ultrahigh Strength Induced by Superstorage Capacity of Dislocations in an Ultrafine-Grained Fe-9Mn-0.15Si-0.26C Steel

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A Fe-9Mn-0.15Si-0.26C steel was prepared via warm rolling, showing the heterogeneous microstructures composed of ultrafine-grained ferrite (~ 330 nm) and nanoscale twins (~ 40 nm) in the lamellar austenite. We aim to improve the strain-hardening rate (SHR) via the transformation-induced-plasticity (TRIP) and twinning-induced-plasticity (TWIP) effects. The steel shows ultrahigh yield strength of 710 ± 10 MPa and ultimate tensile strength of 2410 ± 20 MPa, with the total elongation of 27%. Such an ultrahigh strength is rarely reported for the advanced high strength steels (AHSSs). By controlling the specific strain level, the deformation mechanisms governing the different stages of the warm-rolled steel are explored, suggesting significant differences compared to the typical structural metallic alloys. The uplifted stress-strain curve and continuously increasing hardening curve can be attributed to the continuous martensite transformation and twinning process during the whole strain, and the moderate stability of austenite has played a role. In addition, the geometrical necessary dislocation, \({\rho }_{GND}\), is 1.04 ×1015 m−2 in the fractured specimen (ɛ = 27%), leading to a strain hardening of 1753 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Li, J. Li, Q.G. Meng, W.B. Hua and D.C. Xu, Effect of Heating Rate on Ferrite Recrystallization and Austenite Formation of Cold-Roll Dual Phase Steel, J. Alloy. Comp., 2013, 578, p 320–327.

    Article  CAS  Google Scholar 

  2. S.A. Etesamia, M.H. Enayati and A.G. Kalashami, Austenite Formation and Mechanical Properties of a Cold Rolled Ferritemartensite Structure during Intercritical Annealing, Mater. Sci. Eng. A, 2017, 682, p 296–303.

    Article  CAS  Google Scholar 

  3. N. Yan, H.S. Di, R.D.K. Misra and X.H. Gong, Microstructural Evolution and Mechanical Properties of 9Mn Steel during Warm/Cold Rolling and Subsequent Intercritical Annealing, Mater. Sci. Eng. A, 2020, 796, p 140051.

    Article  CAS  Google Scholar 

  4. S. Lee, S.J. Lee, S. Santhosh Kumar, K. Lee and B.C. Cooman, Localized Deformation in Multiphase, Ultra-Fine-Grained 6 Pct Mn Transformation-Induced Plasticity Steel, Metall. Mater. Trans. A, 2011, 42, p 3638–3651.

    Article  CAS  Google Scholar 

  5. W.Y. Xue, H.F. Zhang, Y.F. Shen and N. Jia, Manganese Controlled Transformation and Twinning of the Nanoscale Austenite in Low-Carbon-Medium-Mn Steel, Mater. Sci. Eng., 2022, 829, p 142162.

    Article  CAS  Google Scholar 

  6. P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer and D.K. Matlock, Austenite Stability Effects on Tensile Behavior of Manganese-Enriched-Austenite Transformation-Induced Plasticity Steel, Metall. Mater. Trans. A, 2011, 42, p 3691–3702.

    Article  CAS  Google Scholar 

  7. F. Yang, J. Zhou, Y. Han, P. Liu, H.W. Luo and H. Dong, A Novel Cold-Rolled Medium Mn Steel with an Ultra-High Product of Tensile Strength and Elongation, Mater. Lett., 2020, 258, p 126804.

    Article  CAS  Google Scholar 

  8. S. Winter, M. Werner, R. Haase, V. Psyk, S. Fritsch, M. Böhme and M.F.X. Wagner, Processing Q&P Steels by Hot-Metal Gas Forming: Influence of Local Cooling Rates on the Properties and Microstructure of a 3rd Generation AHSS, J. Mater. Process. Tech., 2021, 293, p 117070.

    Article  CAS  Google Scholar 

  9. J.H. Han, S.J. Lee and C.Y. Lee, The Size Effect of Initial Martensite Constituents on the Microstructure Tensile Properties of Intercritically Annealed Fe–9Mn–0. 05C Steel, Mater. Sci. Eng., 2015, 633, p 9–16.

    Article  CAS  Google Scholar 

  10. A. Kisko, R.D.K. Misra, J. Talonen and L.P. Karjalainen, The Influence of Grain Size on the Strain-Induced Martensite Formation in Tensile Straining of an Austenitic 15Cr–9Mn–Ni–Cu Stainless Steel, Mater. Sci. Eng. A, 2013, 578, p 408–416.

    Article  CAS  Google Scholar 

  11. T.L. Li, S. Yan and X.H. Liu, Investigation of Metastable Austenite in Q&P Steels and Medium Mn Steels through Deep-Cryogenic Treatment, Mater. Lett., 2021, 290, p 1294.

    Google Scholar 

  12. P.Y. Wen, B. Hu, J.S. Han and H. Luo, A Strong and Ductile Medium Mn Steel Manufactured via Ultrafast Heating Process, J Mater. Sci. Technol., 2022, 97, p 54–68.

    Article  Google Scholar 

  13. S. Gao, Y. Bai, R. Zheng, Y. Tian, W. Mao, A. Shibata and N. Tsuji, Mechanism of Huge Lüders-type Deformation in Ultrafine Grained Austenitic Stainless Steel, Scr. Mater., 2019, 159, p 28–32.

    Article  CAS  Google Scholar 

  14. C. Shao, W. Hui, Y. Zhang, X. Zhao and Y. Weng, Effect of Intercritical Annealing Time on Hydrogen Embrittlement of Warm-Rolled Medium Mn Steel, Mater. Sci. Eng. A, 2018, 726, p 320–331.

    Article  CAS  Google Scholar 

  15. B.B. He, B. Hu, H.W. Yen, G.J. Cheng, Z.K. Wang, H.W. Luo and M.X. Huang, High Dislocation Density–Induced Large Ductility in Deformed and Partitioned Steels, Science, 2017, 357, p 1029–1032.

    Article  CAS  Google Scholar 

  16. W.J. Hui, C.W. Shao, Y.J. Zhang, X.L. Zhao and Y.Q. Weng, Microstructure and Mechanical Properties of Medium Mn Steel Containing 3%Al Processed by Warm Rolling, Mater. Sci. Eng. A, 2017, 707, p 501–510.

    Article  CAS  Google Scholar 

  17. Y.X. Zhou, X.T. Song, J.W. Liang, Y.F. Shen and R.D.K. Misra, Innovative Processing of Obtaining Nanostructured Bainite with High Strength-High Ductility Combination in Low-Carbon-Medium-Mn steel: Process-Structure-Property Relationship, Mater. Sci. Eng. A, 2018, 718, p 267–276.

    Article  CAS  Google Scholar 

  18. T. Chiba, G. Miyamoto and T. Furuhara, Variant Selection of Lenticular Martensite by Ausforming, Scr. Mater., 2012, 67, p 324–327.

    Article  CAS  Google Scholar 

  19. Y.F. Shen, L.N. Qiu, X. Sun, L. Zuo, P.K. Liaw and D. Raabe, Effects of Retained Austenite Volume Fraction, Morphology, and Carbon Content on Strength and Ductility of Nanostructured TRIP-Assisted Steels, Mater. Sci. Eng. A, 2015, 636, p 551–564.

    Article  CAS  Google Scholar 

  20. L.B. Luo, W. Li, S.L. Liu, L. Wang and X. **, Effect of Intermediate Temperature Annealing on the Stability of Retained Austenite and Mechanical Properties of Medium Mn-TRIP Steel, Mater. Sci. Eng., 2019, 742, p 69–77.

    Article  CAS  Google Scholar 

  21. L. Zhang, X.M. Huang, Y.H. Wang, Y.B. Guo, G.Z. Dai and D.S. Li, Achieving Excellent Strength–Ductility and Impact Toughness Combination by Cyclic Quenching in Medium Mn TRIP-Aided Steel, J Mater. Eng. Perform., 2018, 27, p 5769–5777.

    Article  CAS  Google Scholar 

  22. Q. Sun, X.K. Nie, Y. Li and H.S. Di, Microstructure-Property Correlations in Fiber Laser Welded Nb-Ti Microalloyed C-Mn Steel, J Mater. Eng. Perform., 2018, 27, p 847–856.

    Article  CAS  Google Scholar 

  23. B. Hu, B.B. He, G.J. Cheng, W.Y. Hung, M.X. Huang and H.W. Luo, Super-High-Strength and Formable Medium Mn steel Manufactured by Warm Rolling Process, Acta Mater., 2019, 174, p 131–141.

    Article  CAS  Google Scholar 

  24. L. Cheng, A. Böttger, T. de Keijser and E.J. Mittemeijer, Lattice Parameters of iron-Carbon and Iron-Nitrogen Martensites and Austenites, Scr. Mater., 1990, 24, p 509–514.

    Article  CAS  Google Scholar 

  25. P.J. Konijnenberg, S. Zaefferer and D. Raabe, Assessment of Geometrically Necessary Dislocation Levels Derived by 3D EBSD, Acta Mater., 2015, 99, p 402–414.

    Article  CAS  Google Scholar 

  26. R. Zhang, W.Q. Cao, Z.J. Peng, J. Shi, H. Dong and C.X. Huang, Intercritical Rolling Induced Ultrafine Microstructure and Excellent Mechanical Properties of the Medium-Mn Steel, Mater. Sci. Eng. A, 2013, 583, p 84–88.

    Article  CAS  Google Scholar 

  27. Y.F. Shen, N. Jia, L. Zuo and R.D.K. Misra, Softening Behavior by Excessive Twinning and Adiabatic Heating at High Strain Rate in a Fe–20Mn–0.6C TWIP Steel, Acta Mater., 2016, 103, p 229–242.

    Article  CAS  Google Scholar 

  28. B. Hu, X. Tu, H.W. Luo and X. Mao, Effect of Warm Rolling Process on Microstructures and Tensile Properties of 10 Mn Steel, J Mater. Sci. Technol., 2020, 47, p 131–141.

    Article  Google Scholar 

  29. J.T. Benzing, W.E. Luecke, S.P. Mates, D. Ponge, D. Raabe and J.E. Wittig, Intercritical Annealing to Achieve a Positive Strain-Rate Sensitivity of Mechanical Properties and Suppression of Macroscopic Plastic Instabilities in Multi-Phase Medium-Mn Steels, Mater. Sci. Eng. A, 2021, 803, p 140469.

    Article  CAS  Google Scholar 

  30. M. Azrin, G.B. Olson and R.A. Gagne, Inhomogenous Deformation and Strain-Rate Effects in High-Strength TRIP Steels, Mater. Sci. Eng., 1976, 23, p 33–41.

    Article  CAS  Google Scholar 

  31. L. Lu, T. Zhu, Y.F. Shen, M. Dao, K. Lu and S. Suresh, Stress Relaxation and the Structure Size-Dependence of Plastic Deformation in Nanotwinned Copper, Acta Mater., 2009, 54, p 5165–5173.

    Article  CAS  Google Scholar 

  32. G.V. Kurdjumov and G. Sachs, Über den Mechanismus der Stahlhärtung, Z. Phys., 1930, 64, p 325.

    Article  Google Scholar 

  33. V. Mertinger, M. Benke, E. Nagy and T. Pataki, Reversible Characteristics and Cycling Effects of the ε γ Martensitic Transformations in Fe-Mn-Cr Twip/Trip Steels, J. Mater. Eng. Perform., 2014, 23, p 2347–2350.

    Article  CAS  Google Scholar 

  34. B.B. He, H.W. Luo and M.X. Huang, Experimental Investigation on a Novel Medium Mn Steel Combining Transformation-Induced Plasticity and Twinning Induced Plasticity Effects, Int. J. Plast., 2016, 78, p 173–186.

    Article  CAS  Google Scholar 

  35. S.O. Akinwamide, A. Venter, O.J. Akinribide, B.J. Babalola, A. Andrews and P.A. Olubambi, Residual Stress Impact on Corrosion Behaviour of Hot and Cold Worked 2205 Duplex Stainless Steel: A study by x-ray Diffraction Analysis, Eng Fail Anal., 2022, 131, p 105913.

    Article  CAS  Google Scholar 

  36. K.I. Sugimoto, M. Kobayashi and S.I. Hashimoto, Ductility and Strain-Induced Transformation in a High-Strength Transformation-Induced Plasticity-Aided Dual-Phase Steel, Metall. Trans. A, 1992, 23, p 3085–3091.

    Article  Google Scholar 

  37. M.M. Wang, C.C. Tasan, D. Ponge and D. Raabe, Spectral TRIP Enables Ductile 1.1 GPa martensite, Acta Mater., 2016, 111, p 262–272.

    Article  CAS  Google Scholar 

  38. L. Chen, Q.X. Jia, S. Hao, Y.X. Wang, C. Peng, X.C. Ma, Z.Y. Zou and M. **, The Effect of Strain-Induced Martensite Transformation on Strain Partitioning and Damage Evolution in a Duplex Stainless Steel with Metastable Austenite, Mater. Sci. Eng. A, 2021, 814, p 141173.

    Article  CAS  Google Scholar 

  39. X.M. Zhao, Y.F. Shen, L.N. Qiu, X. Sun and L. Zuo, Effects of Intercritical Annealing Temperature on Mechanical Properties of Fe-7.9Mn-0.14Si-0.05Al-0.07C Steel, Materials, 2014, 7, p 7891–7906.

    Article  Google Scholar 

  40. Z. Zribi, H.H. Ktari, F. Herbst, V. Optasanu and N. Njah, EBSD, XRD and SRS Characterization of a Casting Al-7wt%Si alloy Processed by Equal Channel Angular Extrusion: Dislocation Density Evaluation, Mater. Charact., 2019, 153, p 190–198.

    Article  CAS  Google Scholar 

  41. S.H. He, B.B. He, K.Y. Zhu and M.X. Huang, Evolution of Dislocation Density in Bainitic Steel: Modeling and Experiments, Acta Mater., 2018, 149, p 46–56.

    Article  CAS  Google Scholar 

  42. S. Yan, T.S. Liang, Z.Q. Wang, B. Yan, T.L. Li and X.H. Liu, Novel 1. 4 GPa-strength medium-Mn steel with uncompromised high ductility, Mater. Sci. Eng. A, 2020, 773, p 138732.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This Project is supported by the National Key R&D Program of China (2021YFA1200203), and the Natural Science Foundation of China (NSFC) (No. 51574079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. F. Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Shen, Y.F. & Xue, W.Y. Ultrahigh Strength Induced by Superstorage Capacity of Dislocations in an Ultrafine-Grained Fe-9Mn-0.15Si-0.26C Steel. J. of Materi Eng and Perform 31, 6773–6783 (2022). https://doi.org/10.1007/s11665-022-06735-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06735-2

Keywords

Navigation