Log in

Retrogression Forming and Reaging of an AA7075-T6 Alclad Sheet Material

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Retrogression forming and reaging is a new scientific approach to producing components of high-strength aluminum alloys through warm forming followed by a single reaging heat treatment to restore T6 strength. Retrogression forming was applied to stamp 1.6-mm-thick AA7075-T6 Alclad sheet at 200 °C to a depth of 45 mm without visible defects or splitting. During stam**, the sheet material was subjected to multiple deformation modes common in automotive stam** processes, producing local major strains in excess of 20%. Time and temperature were controlled during retrogression forming using the concept of accumulated reduced retrogression time to enable recovery of the original T6 sheet strength by a single reaging heat treatment after forming. Tensile specimens extracted from the formed parts were tested to evaluate the effects of retrogression forming on strength. Reaging with a previously recommended reaging heat treatment of 120 °C for 24 h produced strengths approximately 5% greater than those of the original T6 temper. Reaging with a simulated paint-bake cycle of 185 °C for 25 min produced strengths nearly equivalent to those of the original T6 temper. Exceeding the maximum reduced time for retrogression during forming produced a strength loss that could not be recovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. T.A. Ivanoff, J.T. Carter, L.G. Hector Jr. and E.M. Taleff, Retrogression and Reaging Applied to Warm Forming of High-Strength Aluminum Alloy AA7075-T6 Sheet, Metall. Mater. Trans. A, 2019, 50(3), p 1545–1561

    Article  CAS  Google Scholar 

  2. R.S. Long, E. Boettcher and D. Crawford, Current and Future Uses of Aluminum in the Automotive Industry, J. Mater., 2017, 69(12), p 2635–2639.

    CAS  Google Scholar 

  3. N.R. Harrison and S.G. Luckey, Hot Stam** of a B-Pillar Outer from High Strength Aluminum Sheet AA7075, SAE Int. J. Mater. Manuf., 2014, 7(3), p 567–573

    Article  Google Scholar 

  4. J. Mendiguren, E. Saenz de Arganodona and L. Galdos, Hot Stam** of AA7075 Aluminum Sheets, IOP Conf. Ser.: Mater. Sci. Eng., 2016, 159, p 012026.

    Article  Google Scholar 

  5. A. Keci, N. R. Harrison, and S. G. Luckey, Experimental Evaluation of the Quench Rate of AA7075, SAE Tech. Pap. Ser., 2014, no. 2014-01-0984,

  6. H. Wang, Y.B. Luop, P. Friedman, M.H. Chen and L. Gao, Warm Forming Behavior of High Strength Aluminum Alloy AA7075, Trans. Nonferrous Met. Soc. China, 2012, 22(7), p 1–7

    Article  Google Scholar 

  7. K. Zheng, D.J. Politis, L. Wang and J. Lin, A Review on Forming Techniques for Manufacturing Lightweight Complex-Shaped Aluminum Panel Components, Int. J. Light Mater. Manuf., 2018, 1(2), p 55–90

    Article  Google Scholar 

  8. V. Burt, Forming of Aluminum Alloys, ASM Handbook, Volume 2A: Aluminum science and technology, K. Anderson, J. Weritz, and J. G. Kaufman, Eds., ASM International, 2018, p. 336-356

  9. ASM Handbook Committee, Properties of Wrought Aluminum and Aluminum Alloys, ASM Handbook, Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International, 1990, p. 62-122

  10. K. Anderson, J. Weritz, and J. Gilbert Kaufman, Eds., 7075 and Alclad 7075, ASM Handbook, Volume 2B: Properties and Selection of Aluminum Alloys, ASM International, 2019, p. 432-438

  11. Alcoa Inc., “Alcoa Technical Fact Sheet: Alloy 7075 Plate and Sheet,” Alcoa Inc., Bettendorf, Iowa, Technical Fact Sheet, 2017

  12. T. V. Philip and T. J. McCaffery, Eds., Ultrahigh-Strength Steels, ASM Handbook, Volume Prop. and Selection Irons, Steels, and High-Performance Alloys, ASM International, 1990, pp. 430-448.

  13. H. Kim, L. Cronley, C. Reichert, and P. Zelenak, “Development of the Aluminum Warm Forming Test Cell and Process Solutions,” Int. Auto. Body Cong., Dearborn, MI, Sept 2017

  14. H. Kim, R. Hagnlen, T. Feister and V. Tunga, Comparison of Drawability Between Warm Forming and Cold Forming of Aluminum 6xxx Alloys, IOP Conf. Ser. Mater. Sci. Eng., 2018, 418(012029), p 1–8.

    Google Scholar 

  15. K.E. Rader, J.T. Carter, L.G. Hector Jr. and E.M. Taleff, Plastic Deformation and Ductility of AA7075 and AA6013 at Warm Temperatures Suitable to Retrogression Forming, Metall. Mater. Trans. A, 2021, 52, p 4003–4017

    Article  CAS  Google Scholar 

  16. J.A. Osterreicher, G. Kirov, S.S.A. Gerstl, E. Mukeli, F. Grabner and M. Kumar, Stabilization of 7xxx Aluminum Alloys, J. Alloys Compounds, 2018, 740, p 167–173

    Article  Google Scholar 

  17. P.A. Schuster, J.A. Osterreicher, G. Kirov, C. Sommitsch, O. Kessler and E. Mukeli, Characterisation and Comparison of Process Chains for Producing Automotive Structural Parts from 7xxx Aluminium Sheets, Metals, 2019, 9(305), p 1–15.

    Google Scholar 

  18. O.D. Sherby and J. Wadsworth, Superplasticity- Recent Advances and Future Directions, Prog. Mater. Sci., 1989, 33, p 169–221

    Article  CAS  Google Scholar 

  19. A.J. Barnes, Superplastic Forming of Aluminum Alloys, Mater. Sci. Forum, 1994, 170–172, p 701–714

    Article  Google Scholar 

  20. T.G. Nieh, J. Wadsworth and O.D. Sherby, Superplasticity in Metals and Ceramics, Cambridge University Press, Cambridge, 1997.

    Book  Google Scholar 

  21. A.J. Barnes, Industrial Applications of Superplastic Forming: Trends and Prospects, Mater. Sci. Forum, 2001, 357, p 3–16

    Article  Google Scholar 

  22. T.E. Langdon, Seventy-Five Years of superplasticity: Historic Developments and New Opportunities, J. Mater. Sci., 2009, 44, p 5998–6010

    Article  CAS  Google Scholar 

  23. J. G. Schroth, Advances in Superplasticity and Superplastic Forming, E. M. Taleff, P. A. Friedman, P. E. Krajewski, R. S. Mishra, and J. G. Schroth, Eds., Miner. Metals Mater. Soc., Pittsburgh, PA, 2004, p 9-20.

  24. P.E. Krajewski and A.T. Morales, Tribological Issues during Quick Plastic Forming, J. Mater. Eng. Perf., 2004, 13(6), p 700–709

    Article  CAS  Google Scholar 

  25. J. Mendiguren, R. Ortubay, X. Agirretxe, L. Galdos and E.S. de Argandona, Press Hardening of Alternative High Strength Aluminum and Ultra-High Strength Steels, AIP Conf. Proc., 2016, 1769(050006), p 1–6.

    Google Scholar 

  26. AMAG Austria Metall. AG, “AluReport: Safety and Lightweight Construction with AMAG Aluminium”, 2014, www.amag.at.

  27. M. Reinstettel, “The Door Sidecrash Beam in the New BMW i8: Application of a Press Hardened 7xxx Aluminum Alloy Panel,” Proc. Fifth Int. Conf. Acc. Form. Tech., 2015, p. 349-356.

  28. W. ** Condition, Int. J. Adv. Manuf. Tech., 2017, 92, p 3299–3309

    Article  Google Scholar 

  29. M. Kumar and N.G. Ross, Influence of Temper on the Performance of a High-Strength Al-Zn-Mg Alloy Sheet in the Warm Forming Processing Chain, J. Mater. Process. Tech., 2016, 231, p 189–198

    Article  CAS  Google Scholar 

  30. M.Y. Lee, S.M. Sohn, C.Y. Kang, D.W. Suh and S.Y. Lee, Effects of Pre-Treatment Condition on Warm Hydroformability of 7075 Aluminum Tubes, J. Mater. Process. Tech., 2004, 155–156, p 1337–1343

    Article  Google Scholar 

  31. W. Huo, L. Huo, Y. Zhang and J. Zhang, Warm Formability and Post-Forming Microstructure/Property of High-Strength AA7075-T6 Al Alloy, Mater. Sci. Eng. A, 2016, 675, p 44–54

    Article  CAS  Google Scholar 

  32. J.A. Osterreicher, M.A. Tunes, F. Grabner, A. Arnoldt, T. Kremmer, S. Pogatscher and C.M. Schlogl, Warm-Forming of Pre-Aged Al-Zn-Mg-Cu Alloy Sheet, Mater. Design, 2020, 193(108837), p 1–14

    Google Scholar 

  33. K.E. Rader, J.T. Carter, L.G. Hector Jr. and E.M. Taleff, Retrogression Forming and Reaging of AA7075-T6 Alclad to Produce Stam**s WITH Peak Strength, Light Met., 2020, 2020, p 247–252.

    Google Scholar 

  34. K.E. Rader, J.T. Carter, L.G. Hector Jr. and E.M. Taleff, Review of Retrogression Forming and Reaging of AA7075-T6 Sheet, Light Met., 2021, 2021, p 206–211.

    Google Scholar 

  35. The Aluminum Automotive Manual (European Aluminum Association, Brussels, Belgium, 2002). https://www.european-aluminum.edu/resource-hub/aluminum-automotive-manual/. Accessed 5 Feb. 2020.

  36. J. C. Benedyk: US Patent 5911844, 1999.

  37. J.C. Benedyk and S. Mostovoy, Retrogression Heat Treatment Applied to Aluminum Extrusions for Difficult Forming Applications, Light Met. Age, 1997, 55(1–2), p 29–33

    Google Scholar 

  38. R. M. Kelly: US Patent 20150020927A1, 2015

  39. J.K. Park, Influence of Retrogression and Reaging Treatments on the Strength and Stress Corrosion Resistance of Aluminum Alloy 7705–T6, Mater. Sci. Eng. A, 1988, 103(2), p 223–231

    Article  Google Scholar 

  40. J.K. Park and A.J. Ardell, Effect of Retrogression and Reaging Treatments on the Microstructure of Al-7075-T651, Metall. Trans. A, 1984, 15, p 1531–1543

    Article  Google Scholar 

  41. B. M. Cina and B. Ranish, New Technique for Reducing Susceptibility to Stress-Corrosion of High Strength Aluminum Alloys, Alu. Ind. Prod., 1974, p. 1-29,

  42. K. Rajan, W. Wallace and J.C. Beddoes, Microstructural Study of a High-Strength Stress-Corrosion Resistance 7075 Aluminum Alloy, J. Mater. Sci., 1982, 17, p 2817–2824

    Article  CAS  Google Scholar 

  43. N.C. Danh, K. Rajan and W. Wallace, A TEM Study of Microstructural Changes During Retrogression and Reaging in 7075 Aluminum, Metall. Trans. A, 1983, 14(9), p 1843–1850

    Article  Google Scholar 

  44. K.E. Rader, J.T. Carter, L.G. Hector Jr. and E.M. Taleff, Retrogression and Reaging of AA7075 and AA6013 Aluminum Alloys, Met. Metall. Trans. A, 2021, 52(3), p 1006–1018

    Article  CAS  Google Scholar 

  45. B. M. Cina, “Reducing the Susceptibility of Alloys, Particularly Aluminum Alloys, to Stress Corrosion Cracking,” US Patent 3856584, Dec 1974

  46. R.N. Lumley, A.J. Morton, R.G. O’Donnell and I.J. Polmear, New Heat Treatments for Age-Hardenable Aluminum Alloys, Heat Treat. Prog., 2005, 5(2), p 23–29

    CAS  Google Scholar 

  47. L. Zhuang, R. de Haan, J. Bottema, C.T.W. Lahaye and P. De Smet, Improvement in Bake Hardening Response of Al-Si-Mg Alloys, Mater. Sci. Forum, 2000, 331, p 1309–1314

    Article  Google Scholar 

  48. D.C. Balderach, J.A. Hamilton, E. Leung, M.C. Tejeda, J. Qiao and E.M. Taleff, The Paint-Bake Response of Three Al-Mg-Zn Alloys, Mater. Sci. Eng. A, 2003, 339, p 194–204

    Article  Google Scholar 

  49. J.K. Park and A.J. Ardell, Microstructure of the Commercial 7075 Al Alloy in the T651 and T7 Tempers, Metall. Trans. A, 1983, 14, p 1957–1966

    Article  Google Scholar 

  50. Fuchs Lubricant Co., “Forge Ease AL 278: Synthetic lubricant for use in warm forming,” Fuchs Lubricants Co., Harvey, IL, Technical Fact Sheet, 2015

  51. M.A. Sutton, J.J. Orteu and H. Schreier, Image Correlation for Shape, Moton, and Deformation Measurements, Springer, US, 2009.

    Google Scholar 

  52. GOM, Argus [Software], Available from https://www.gom.com/en/products/3d-testing/argus#1d935204411e47cb9a9da5101175b184

  53. “Standard Test Methods for Tension Testing of Metallic Materials,” ASTM E8/E8M-16a, ASTM International, West Conshohocken, PA, 2017

  54. Correlated Solutions, Inc., Vic-3D [Software], Version 8, Available from https://www.correlatedsolutions.com/vic-3d/

Download references

Acknowledgments

The authors thank Hyunok Kim, Tom Feister, Laura Zoller, and Giacomo Melaragno from EWI for providing the facilities used for the forming experiments, their assistance with operating the forming equipment, and providing Argus™ strain data. The authors also thank Todd Meitzner for performing the tensile tests. One author, K. E. Rader, expresses gratitude to General Motors for support during summer research activities. This work was funded by the National Science Foundation under GOALI grant number CMMI-1634495 and by General Motors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine E. Rader.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rader, K.E., Carter, J.T., Hector, L.G. et al. Retrogression Forming and Reaging of an AA7075-T6 Alclad Sheet Material. J. of Materi Eng and Perform 31, 5311–5323 (2022). https://doi.org/10.1007/s11665-022-06663-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06663-1

Keywords

Navigation