Log in

The Effect of Repeated Upsetting Process on Microstructure, Shear Strength, and Fracture Toughness of SiC/AZ80 Nanocomposite

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, first, the microstructure and mechanical properties of AZ80 magnesium alloy and SiC/AZ80 nanocomposite were compared. Then, the effects of 1, 3, and 5 passes of repeated upsetting (RU) process performed at 300 °C on the nanocomposite were investigated. According to the optical microscopy images, the average grain size in AZ80 alloy is 60.3 μm, which has decreased to 30.6 μm as a result of adding SiC nanoparticles. After the fifth pass of RU process, the average grain size reaches its minimum value as 4.5 μm with a homogenous structure. The shear punch test was run to measure the shear strength of the samples. The results showed shear yield stress and ultimate shear strength, which were 111.2 and 145.2 MPa in AZ80 alloy, respectively, increasing to 150.6 and 181 MPa in nanocomposite after five passes of RU process. Also, mixed-mode fracture tests show that fracture toughness in mode I and the mixed-mode significantly increased as a result of adding the SiC nanoparticles and RU process. Following a decrease in grain size and improvement in strength, the surface hardness was elevated from 79.9 HV in AZ80 alloy to 96.2 HV in RUed nanocomposite. These results indicate that the RU process, which is capable of manufacturing thick samples, can improve the microstructure, shear strength, fracture toughness, and hardness of SiC/AZ80 nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Z. Li, K. **a and H. Ding, Consolidation of Pure Magnesium Powder by Equal-Channel Angular Pressing with Back Pressure, J. Mater. Eng. Perform., 2021, 30(3), p 2213–2219.

    CAS  Google Scholar 

  2. S.K. Sahoo, R.K. Sabat, S. Panda, S.C. Mishra and S. Suwas, Mechanical Property of Pure Magnesium: From Orientation Perspective Pertaining to Deviation from Basal Orientation, J. Mater. Eng. Perform., 2015, 24(6), p 2346–2353.

    CAS  Google Scholar 

  3. H. Watarai, Trend of Research and Development for Magnesium Alloys - Reducing the Weight of Structural Materials in Motor Vehicles, Sci. Technol. Trends, 2004, 18, p 84–97.

    Google Scholar 

  4. A. Matin, F. Saniee and H.R. Abedi, Microstructure and Mechanical Properties of Mg/SiC and AZ80/SiC Nano-Composites Fabricated through Stir Casting Method, Mater. Sci. Eng. A, 2015, 625, p 81–88.

    CAS  Google Scholar 

  5. K.B. Nie, K.K. Deng, X.J. Wang, T. Wang and K. Wu, Influence of SiC Nanoparticles Addition on the Microstructural Evolution and Mechanical Properties of AZ91 Alloy during Isothermal Multidirectional Forging, Mater. Charact., 2017, 124, p 14–24.

    CAS  Google Scholar 

  6. H.K. Khoshzaban, F. Saniee and H.R. Abedi, Mechanical Properties Improvement of Cast AZ80 Mg Alloy/Nano-Particles Composite via Thermomechanical Processing, Mater. Sci. Eng. A, 2014, 595, p 284–290.

    Google Scholar 

  7. H. Xu, Y. Zhou, Y.J. Zou, M. Liu, Z.P. Guo, S.Y. Ren, R.H. Yan and X.M. Cheng, Effect of Pulsed Current on the Tensile Deformation Behavior and Microstructure Evolution of AZ80 Magnesium Alloy, Materials, 2020, 13(21), p 1–13.

    Google Scholar 

  8. Z. Trojanová, K. Dash, K. Máthis, P. Lukáč and A. Kasakewitsch, Elastic and Plastic Behavior of an Ultrafine-Grained Mg Reinforced with BN Nanoparticles, J. Mater. Eng. Perform., 2018, 27(6), p 3112–3121.

    Google Scholar 

  9. H.Z. Ye and X.Y. Liu, Review of Recent Studies in Magnesium Matrix Composites, J. Mater. Sci., 2004, 39(20), p 6153–6171.

    CAS  Google Scholar 

  10. M.K. Surappa, Microstructure Evolution during Solidification of DRMMCs (Discontinuously Reinforced Metal Matrix Composites): State of Art, J. Mater. Process. Technol., 1997, 63(1), p 325–333.

    Google Scholar 

  11. Z. Huang, C. Qi, G. Yang, H. Lai, Y. Zhu and C. Zhi, Effect of Stress State in Rolling Deformation Zone of AZ31 Magnesium Alloy Plate on Edge Cracking, J. Mater. Eng. Perform., 2020, 29(6), p 3906–3912.

    CAS  Google Scholar 

  12. X.G. Qiao, T. Ying, M.Y. Zheng, E.D. Wei, K. Wu, X.S. Hu, W.M. Gan, H.G. Brokmeier and I.S. Golovin, Microstructure Evolution and Mechanical Properties of Nano-SiCp/AZ91 Composite Processed by Extrusion and Equal Channel Angular Pressing (ECAP), Mater. Charact., 2016, 121, p 222–230.

    CAS  Google Scholar 

  13. W. Liao, B. Ye, L. Zhang, H. Zhou, W. Guo, Q. Wang and W. Li, Microstructure Evolution and Mechanical Properties of SiC Nanoparticles Reinforced Magnesium Matrix Composite Processed by Cyclic Closed-Die Forging, Mater. Sci. Eng. A, 2015, 642, p 49–56.

    CAS  Google Scholar 

  14. R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater. Sci., 2006, 51(7), p 881–981.

    CAS  Google Scholar 

  15. U.M. Iqbal and V.S.S. Kumar, An Analysis on Effect of Multipass Twist Extrusion Process of AA6061 Alloy, Mater. Des., 2013, 50, p 946–953.

    Google Scholar 

  16. A.P. Zhilyaev and T.G. Langdon, Using High-Pressure Torsion for Metal Processing: Fundamentals and Applications, Prog. Mater. Sci., 2008, 53(6), p 893–979.

    CAS  Google Scholar 

  17. Q.F. Wang, X.P. **ao, J. Hu, W.W. Xu, X.Q. Zhao and S.J. Zhao, An Ultrafine-Grained AZ31 Magnesium Alloy Sheet With Enhanced Superplasticity Prepared by Accumulative Roll Bonding, J. Iron Steel Res. Int., 2007, 14(5), p 167–172.

    Google Scholar 

  18. G. Faraji, P. Yavari, S. Aghdamifar and M.M. Mashhadi, Mechanical and Microstructural Properties of Ultra-Fine Grained AZ91 Magnesium Alloy Tubes Processed via Multi Pass Tubular Channel Angular Pressing (TCAP), J. Mater. Sci. Technol., 2014, 30(2), p 134–138.

    CAS  Google Scholar 

  19. M. Kamachi, M. Furukawa, Z. Horita and T.G. Langdon, Equal-Channel Angular Pressing Using Plate Samples, Mater. Sci. Eng. A, 2003, 361(1), p 258–266.

    Google Scholar 

  20. W. Guo, Q.D. Wang, B. Ye, M.P. Liu, T. Peng, X.T. Liu and H. Zhou, Enhanced Microstructure Homogeneity and Mechanical Properties of AZ31 Magnesium Alloy by Repetitive Upsetting, Mater. Sci. Eng. A, 2012, 540, p 115–122.

    CAS  Google Scholar 

  21. B. Talebanpour, R. Ebrahimi and K. Janghorban, Microstructural and Mechanical Properties of Commercially Pure Aluminum Subjected to Dual Equal Channel Lateral Extrusion, Mater. Sci. Eng. A, 2009, 527(1), p 141–145.

    Google Scholar 

  22. B. Talebanpour and R. Ebrahimi, Upper-Bound Analysis of Dual Equal Channel Lateral Extrusion, Mater. Des., 2009, 30(5), p 1484–1489.

    CAS  Google Scholar 

  23. N. Fakhar, F. Fereshteh-Saniee and R. Mahmudi, Significant Improvements in Mechanical Properties of AA5083 Aluminum Alloy Using Dual Equal Channel Lateral Extrusion, Trans. Nonferrous Met. Soc. China, 2016, 26(12), p 3081–3090.

    CAS  Google Scholar 

  24. F. Akbaripanah, F. Fereshteh-Saniee, R. Mahmudi and H.K. Kim, Microstructural Homogeneity, Texture, Tensile and Shear Behavior of AM60 Magnesium Alloy Produced by Extrusion and Equal Channel Angular Pressing, Mater. Des., 2013, 43, p 31–39.

    CAS  Google Scholar 

  25. M.J. Esfandyarpour, R. Alizadeh and R. Mahmudi, Applicability of Shear Punch Testing to the Evaluation of Hot Tensile Deformation Parameters and Constitutive Analyses, J. Mater. Res. Technol., 2019, 8(1), p 996–1002.

    CAS  Google Scholar 

  26. M.A. Salevati, F. Akbaripanah and R. Mahmudi, Microstructure, Texture, and Mechanical Properties of AM60 Magnesium Alloy Processed by Extrusion and Multidirectional Forging, J. Mater. Eng. Perform., 2019, 28(5), p 3021–3030.

    CAS  Google Scholar 

  27. R. Alizadeh, R. Mahmudi, A.H.W. Ngan, P.H.R. Pereira, Y. Huang and T.G. Langdon, Microstructure, Texture, and Superplasticity of a Fine-Grained Mg-Gd-Zr Alloy Processed by Equal-Channel Angular Pressing, Metall. Mater. Trans. A, 2016, 47(12), p 6056–6069.

    CAS  Google Scholar 

  28. Y. **a, L. Yulong and L. Li, Effect of Grain Refinement on Fracture Toughness and Fracture Mechanism in AZ31 Magnesium Alloy, Procedia Mater. Sci., 2014, 3, p 1780–1785.

    CAS  Google Scholar 

  29. M.A. Kazemi and R. Seifi, Effects of Crack Orientation on the Fatigue Crack Growth Rate and Fracture Toughness of AA6063 Alloy Deformed by ECAP, Mater. Sci. Eng. A, 2018, 733, p 71–79.

    CAS  Google Scholar 

  30. G.L. Hankin, M.B. Toloczko, K.I. Johnson, M.A. Khaleel, M.L. Hamilton, F.A. Garner, R.W. Davies, and R.G. Faulkner, An investigation into the origin and nature of the slope and x-axis intercept of the shear punch-tensile yield strength correlation using finite element analysis. In Effects of Radiation on Materials: 19th International Symposium, (ASTM International, West Conshohocken, PA, 2000), pp. 1018–1028.

  31. ASTM E1820–11, Standard Test Method for Measurement of Fracture Toughness, ASTM International, West Conshohocken, PA, 2011.

    Google Scholar 

  32. Y. Li, B. Gong, M. Corrado, C. Deng and D. Wang, Experimental Investigation of Out-of-Plane Constraint Effect on Fracture Toughness of the SE(T) Specimens, Int. J. Mech. Sci., 2017, 128–129, p 644–651.

    Google Scholar 

  33. R. Seifi and M.A. Kazemi, An Investigation on the Effects of Equal Channel Angular Pressing on the Mixed-mode Fracture Toughness and Mechanical Properties of 6063 Aluminium Alloy, Fatigue Fract. Eng. Mater. Struct., 2017, 41, p 1758–1770.

    Google Scholar 

  34. A. Eshaghi Oskui, N. Choupani and M. Shameli, 3D Characterization of Mixed-Mode Fracture Toughness of Materials Using a New Loading Device, Lat. Am. J. Solids Struct., 2016, 13, p 1464–1482.

    Google Scholar 

  35. N. Hallbäck and N. Jönsson, T-stress evaluations of mixed mode i/ii fracture specimens and T-effects on mixed mode failure of aluminium, Int. J. Fract., 1996, 76(2), p 141–168.

    Google Scholar 

  36. M.A. Salevati, A. Imam, R. Seifi and F. Akbaripanah, Investigating the Microstructure, Hardness and Tensile Behavior of Magnesium AZ80 Alloy and AZ80/SiC Nanocomposite Manufactured Through Dual Equal Channel Lateral Extrusion (DECLE), Met. Mater. Int., 2020 https://doi.org/10.1007/s12540-020-00694-w

    Article  Google Scholar 

  37. ASTM E384–17, Standard Test Method for Microindentation Hardness of Materials, ASTM International, West Conshohocken, PA, 2017.

    Google Scholar 

  38. M. Gupta and W.L.E. Wong, Magnesium-Based Nanocomposites: Lightweight Materials of the Future, Mater. Charact., 2015, 105, p 30–46.

    CAS  Google Scholar 

  39. Y.V.R.K. Prasad, K.P. Rao and M. Gupta, Hot Workability and Deformation Mechanisms in Mg/Nano–Al2O3 Composite, Compos. Sci. Technol., 2009, 69(7), p 1070–1076.

    CAS  Google Scholar 

  40. J. Robson, D.T. Henry and B. Davis, Particle Effects on Recrystallization in Magnesium-Manganese Alloys: Particle-Stimulated Nucleation, Acta Mater., 2009, 57, p 2739–2747.

    CAS  Google Scholar 

  41. F. Fereshteh-Saniee, N. Fakhar, F. Karami and R. Mahmudi, Superior Ductility and Strength Enhancement of ZK60 Magnesium Sheets Processed by a Combination of Repeated Upsetting and Forward Extrusion, Mater. Sci. Eng. A, 2016, 673, p 450–457.

    CAS  Google Scholar 

  42. N. Nemati and M. Emamy, Evaluating Microstructure and High-Temperature Shear Behavior of Hot Extruded Al-Al13Fe4 Nanocomposite, Mater. Trans., 2016, 57(8), p 1236–1245.

    CAS  Google Scholar 

  43. S.M. Masoudpanah, R. Mahmudi and T.G. Langdon, Correlation Between Shear Punch and Tensile Measurements for an AZ31 Mg Alloy Processed by Equal-Channel Angular Pressing, Kov. Mater., 2011, 49(1), p 43–50.

    CAS  Google Scholar 

  44. H. Yu, Y. **n, M. Wang and Q. Liu, Hall-Petch Relationship in Mg Alloys: A Review, J. Mater. Sci. Technol., 2018, 34(2), p 248–256.

    CAS  Google Scholar 

  45. Z. Zhang and D.L. Chen, Contribution of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites, Mater. Sci. Eng. A, 2008, 483–484, p 148–152.

    Google Scholar 

  46. M. De Cicco, H. Konishi, G. Cao, H. Choi, L.-S. Turng, J.H. Perepezko, S. Kou, R. Lakes and X. Li, Strong, Ductile Magnesium-Zinc Nanocomposites, Metall. Mater. Trans. A, 2009, 40, p 3038–3045.

    Google Scholar 

  47. X.L. Zhong, W.L.E. Wong and M. Gupta, Enhancing Strength and Ductility of Magnesium by Integrating It with Aluminum Nanoparticles, Acta Mater., 2007, 55(18), p 6338–6344.

    CAS  Google Scholar 

  48. M. Sabbaghian, R. Mahmudi and K.S. Shin, Effect of Texture and Twinning on Mechanical Properties and Corrosion Behavior of an Extruded Biodegradable Mg–4Zn Alloy, J. Magnes. Alloy., 2019, 7(4), p 707–716.

    CAS  Google Scholar 

  49. A. Heczel, F. Akbaripanah, M.A. Salevati, R. Mahmudi, Á. Vida and J. Gubicza, A Comparative Study on the Microstructural Evolution in AM60 Alloy Processed by ECAP and MDF, J. Alloys Compd., 2018, 763, p 629–637.

    CAS  Google Scholar 

  50. W. Guo, Q. Wang, B. Ye, X. Li, X. Liu and H. Zhou, Microstructural Refinement and Homogenization of Mg–SiC Nanocomposites by Cyclic Extrusion Compression, Mater. Sci. Eng. A, 2012, 556, p 267–270.

    CAS  Google Scholar 

  51. M. Alizadeh, H.A. Beni, M. Ghaffari and R. Amini, Properties of High Specific Strength Al–4wt.% Al2O3/B4C Nano-Composite Produced by Accumulative Roll Bonding Process, Mater. Des., 2013, 50, p 427–432.

    CAS  Google Scholar 

  52. M. Rashad, F. Pan, M. Asif, S. Hussain and M. Saleem, Improving Properties of Mg with Al–Cu Additions, Mater. Charact., 2014, 95, p 140–147.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Imam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salevati, M.A., Imam, A., Seifi, R. et al. The Effect of Repeated Upsetting Process on Microstructure, Shear Strength, and Fracture Toughness of SiC/AZ80 Nanocomposite. J. of Materi Eng and Perform 31, 560–575 (2022). https://doi.org/10.1007/s11665-021-06215-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06215-z

Keywords

Navigation