Log in

Corrosion Behavior of a Selective Laser Melted Inconel 718 Alloy in a 3.5 wt.% NaCl Solution

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The corrosion behavior of an Inconel 718 alloy fabricated using the selective laser melting (SLM) technique in a 3.5 wt.% NaCl solution is determined. The corrosive effect of the NaCl solution on the Inconel 718 alloy is investigated using potentiodynamic polarization curve measurements, Mott-Schottky plots, electrochemical impedance spectroscopy, atomic force microscopy, and x-ray photoelectron spectroscopy (XPS) and is compared with that on a commercially rolled Inconel 718 alloy (R 718). Electrochemical results suggest that the application of SLM to the Inconel 718 alloy lowers its corrosion resistance. The passive films formed on both alloys show p-type and n-type semiconductor behaviors. However, the concentrations of the defects in the passive films formed on the surface of the SLM Inconel 718 alloy are higher than those on the surface of the commercially rolled R 718. XPS shows that the passive film formed on the SLM Inconel 718 alloy has a higher NiO content, leading to the deterioration of its protective properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Reference

  1. L.Y. Wang, H.P. Li, Q.Y. Liu, L.P. Xu, S. Lin and K. Zheng, Effect of Sodium Chloride on the Electrochemical Corrosion of Inconel 625 at High Temperature and Pressure, J. Alloys Compd., 2017, 703, p 523–529.

    Article  CAS  Google Scholar 

  2. L.D. Teng, T.T. Zhao, T.F. Cheng and Y.T. Yang, Microstructure Evolution and Corrosion Behavior of Nb-Alloyed Cast Heat-Resistant Steel During Different Aging Treatments, J. Iron Steel Res. Int., 2020, 27, p 1456–1465.

    Article  Google Scholar 

  3. L.L. Yang, J.L. Wang, R.Z. Yang, S.S. Yang, Y.X. Jia, M.H. Chen, Y.X. Qiao, P.Y. Guo, S.L. Zhu and F.H. Wang, Oxidation Behavior of a Nanocrystalline Coating with Low Ta Content at High Temperature, Corros. Sci., 2021, 180, p 109182.

    Article  CAS  Google Scholar 

  4. B.C. Zhang, M.Z. **u, Y.T. Tan, J. Wei and P. Wang, Pitting Corrosion of SLM Inconel 718 Sample Under Surface and Heat Treatments, Appl. Surf. Sci., 2019, 490, p 556–567.

    Article  CAS  Google Scholar 

  5. E.O. Ezugwu, Z.M. Wang and A.R. Machado, The Machinability of Nickel-Based Alloys: A Review, J. Mater. Process. Tech., 1999, 86, p 1–16.

    Article  Google Scholar 

  6. S.X. **, H.L. Ma, E.Y. Lu, L. Zhou, Q.L. Zhang, P. Fan, Q.Z. Yan, D.Q. Yuan, X.Z. Cao and B.Y. Wang, Depth Distributions of Cavities in Advanced Ferritic/Martensitic and Austenitic Steels with High Helium Preimplantation and High Damage Level, Mater. Today Energy, 2021, 20, p 100687.

    Article  CAS  Google Scholar 

  7. T. Kurzynowski, I. Smolina, K. Kobiela, B. Kuźnicka and E. Chlebus, Wear and Corrosion Behaviour of Inconel 718 Laser Surface Alloyed with Rhenium, Mater. Des., 2017, 132, p 349–359.

    Article  CAS  Google Scholar 

  8. M.E. Aydinöz, F. Brenne, M. Schaper, C. Schaak, W. Tillmann, J. Nellesen and T. Niendorf, On the Microstructural and Mechanical Properties of Post-Treated Additively Manufactured Inconel 718 Superalloy Under Quasi-Static and Cyclic Loading, Mater. Sci. Eng. A, 2016, 669, p 246–258.

    Article  Google Scholar 

  9. R. Firoz, S.K. Basantia, N. Khutia, H.N. Bar, S. Sivaprasad and G.V.S. Murthy, Effect of Microstructural Constituents on Mechanical Properties and Fracture Toughness of Inconel 718 with Anomalous Deformation Behavior at 650 °C, J. Alloys Compd., 2020, 845, p 156276.

    Article  CAS  Google Scholar 

  10. S. Gorsse, C. Hutchinson, M. Goune and R. Banerjee, Additive Manufacturing of Metals: A Brief Review of the Characteristic Microstructures and Properties Of Steels, Ti-6Al-4V and High-Entropy Alloys, Sci. Technol. Adv. Mater., 2017, 18, p 584–610.

    Article  CAS  Google Scholar 

  11. J.J. Yang, H.H. Yang, H.C. Yu, Z.M. Wang and X.Y. Zeng, Corrosion Behavior of Additive Manufactured Ti-6Al-4V Alloy in NaCl Solution, Metall. Mater. Trans. A, 2017, 48, p 3583–3593.

    Article  CAS  Google Scholar 

  12. L.N. Zhang and O.A. Ojo, Corrosion Behavior of Wire Arc Additive Manufactured Inconel 718 Superalloy, J. Alloys Compd., 2020, 829, p 154455.

    Article  CAS  Google Scholar 

  13. L. Liu, Y. Li and F.H. Wang, Influence of Micro-Structure on Corrosion Behavior of a Ni-Based Superalloy in 35% NaCl, Electrochim. Acta, 2007, 52, p 7193–7202.

    Article  CAS  Google Scholar 

  14. W.P. Zhang, L.G. Song, T. Zhu, Y. **ong, H.L. Ma, Q.Z. Yan, X.Z. Cao, B.Y. Wang and S.X. **, Investigation of Spatial Relationship Between Helium Bubbles and Dislocation Loops in RAFM Steel, J. Nucl. Mater., 2021, 548, p 152862.

    Article  CAS  Google Scholar 

  15. P.R. Zhang and Z.Q. Liu, Physical-Mechanical and Electrochemical Corrosion Behaviors of Additively Manufactured Cr-Ni-Based Stainless Steel Formed by Laser Cladding, Mater. Des., 2016, 100, p 254–262.

    Article  CAS  Google Scholar 

  16. D.C. Kong, C.F. Dong, X.Q. Ni, L. Zhang, H. Luo, R.X. Li, L. Wang, C. Man and X.G. Li, The Passivity of Selective Laser Melted 316L Stainless Steel, Appl. Surf. Sci., 2020, 504, p 144495.

    Article  CAS  Google Scholar 

  17. C. Örnek, Additive Manufacturing—A General Corrosion Perspective, Corros. Eng. Sci. Technol., 2018, 53, p 531–535.

    Article  Google Scholar 

  18. B.T. Wu, Z.X. Pan, S.Y. Li, D. Cuiuri, D.H. Ding and H.J. Li, The Anisotropic Corrosion Behaviour of Wire Arc Additive Manufactured Ti-6Al-4V Alloy in 35% NaCl Solution, Corros. Sci., 2018, 137, p 176–183.

    Article  CAS  Google Scholar 

  19. X.Q. Ni, D.C. Kong, Y. Wen, L. Zhang, W.H. Wu, B.B. He, L. Lu and D.X. Zhu, Anisotropy in Mechanical Properties and Corrosion Resistance of 316L Stainless Steel Fabricated by Selective Laser Melting, Int. J. Min. Metall. Mater., 2019, 26, p 319–328.

    Article  CAS  Google Scholar 

  20. D.C. Kong, X.Q. Ni, C.F. Dong, L. Zhang, J.Z. Yao, C. Man, L. Wang, K. **ao and X.G. Li, Anisotropic Response in Mechanical and Corrosion Properties of Hastelloy X Fabricated by Selective Laser Melting, Const. Build. Mater., 2019, 221, p 720–729.

    Article  CAS  Google Scholar 

  21. C. Juillet, A. Oudriss, J. Balmain, X. Feaugas and F. Pedraza, Characterization and Oxidation Resistance Of Additive Manufactured and Forged IN718 Ni-Based Superalloys, Corros. Sci., 2018, 142, p 266–276.

    Article  CAS  Google Scholar 

  22. T.M. Chiu, M. Mahmoudi, W. Dai, A. Elwany, H. Liang and H. Castaneda, Corrosion Assessment of Ti-6Al-4V Fabricated Using Laser Powder-Bed Fusion Additive Manufacturing, Electrochim. Acta, 2018, 279, p 143–151.

    Article  CAS  Google Scholar 

  23. D.C. Kong, C.F. Dong, X.Q. Ni and X.G. Li, Corrosion of Metallic Materials Fabricated by Selective Laser Melting, npj Mater. Degrad., 2019, 3, p 24.

    Article  Google Scholar 

  24. D.C. Kong, C.F. Dong, S.L. Wei, X.Q. Ni, L. Zhang, R.X. Li, L. Wang, C. Man and X.G. Li, About Metastable Cellular Structure in Additively Manufactured Austenitic Stainless Steels, Addit. Manuf., 2021, 38, p 101804.

    CAS  Google Scholar 

  25. Y.X. Qiao, S.L. Sheng, L.M. Zhang, J. Chen, L.L. Yang, H.L. Zhou, Y.X. Wang, H.B. Li and Z.B. Zheng, Friction and Wear Behaviors of a High Nitrogen Austenitic Stainless Steel Fe-19Cr-15Mn-066N, J Min Metall Sect B-Metall., 2021. https://doi.org/10.2298/JMMB201026025Q.

    Article  Google Scholar 

  26. G.H. Cao, T.Y. Sun, C.H. Wang, X. Li, M. Liu, Z.X. Zhang, P.F. Hu, A.M. Russell, R. Schneider, D. Gerthsen, Z.J. Zhou, C.P. Li and G.F. Chen, Investigations of γ′, γ″ and δ Precipitates in Heat-Treated Inconel 718 Alloy Fabricated by Selective Laser Melting, Mater. Charact., 2018, 136, p 398–406.

    Article  CAS  Google Scholar 

  27. B. Anush Raj, J.T. Winowlin Jappes, M. Adam Khan, V. Dillibabu and N.C. Brintha, Direct Metal Laser Sintered (DMLS) Process to Develop Inconel 718 Alloy for Turbine Engine Components, Optik, 2020, 202, p 163735.

    Article  CAS  Google Scholar 

  28. M. Sundararaman, P. Mukhopadhyay and S. Banerjee, Some Aspects of the Precipitation of Metastable Intermetallic Phases in INCONEL 718, Metall. Mater. Trans. A, 1992, 23, p 2015–2028.

    Article  Google Scholar 

  29. Z.R. Ye, Z.C. Qiu, Z.B. Wang, Y.G. Zheng, R. Yi and X. Zhou, Can the Prior Cathodic Polarisation Treatment Remove the Air-Formed Surface Film and is it Necessary for the Potentiodynamic Polarisation Test?, Acta Metall. Sin., 2020, 33, p 839–845.

    Article  CAS  Google Scholar 

  30. Z.G. Liu, X.H. Gao, M. **ong, P. Li, R.D.K. Misra, D.Y. Rao and Y.C. Wang, Role of Hot Rolling Procedure and Solution Treatment Process on Microstructure, Strength and Cryogenic Toughness of High Manganese Austenitic Steel, Mater. Sci. Eng. A, 2021, 807, p 140881.

    Article  CAS  Google Scholar 

  31. L.O. Osoba, A.M. Oladoye and V.E. Ogbonna, Corrosion Evaluation of Superalloys Haynes 282 and Inconel 718 in Hydrochloric Acid, J. Alloys Compd., 2019, 804, p 376–384.

    Article  CAS  Google Scholar 

  32. D.P. Wang, H.T. Zhang, P.Y. Guo, B.A. Sun and Y.X. Wang, Nanoscale Periodic Distribution of Energy Dissipation at the Shear Band Plane in a Zr-Based Metallic Glass, Scripta Mater., 2021, 197, p 113784.

    Article  CAS  Google Scholar 

  33. Y.X. Qiao, D.K. Xu, S. Wang, Y.J. Ma, J. Chen, Y.X. Wang and H.L. Zhou, Effect of Hydrogen Charging on Microstructural Evolution and Corrosion Behavior of Ti-4Al-2V-1Mo-1Fe Alloy, J. Mater. Sci. Technol., 2021, 60, p 168–176.

    Article  CAS  Google Scholar 

  34. E.E. Oguzie, J.B. Li, Y.Q. Liu, D.M. Chen, Y. Li, K. Yang and F.H. Wang, The Effect of Cu addition on the Electrochemical Corrosion and Passivation Behavior of Stainless Steels, Electrochim. Acta, 2010, 55, p 5028–5035.

    Article  CAS  Google Scholar 

  35. H. Nady, M.M. El-Rabiei and M. Samy, Corrosion Behavior and Electrochemical Properties of Carbon Steel, Commercial Pure Titanium, Copper and Copper-Aluminum-Nickel Alloy in 35% Sodium Chloride Containing Sulfide Ions, Egypt. J. Petrol., 2017, 26, p 79–94.

    Article  Google Scholar 

  36. Y. Li and Y.F. Cheng, Passive Film Growth on Carbon Steel and its Nanoscale Features at Various Passivating Potentials, Appl. Surf. Sci., 2017, 396, p 144–153.

    Article  CAS  Google Scholar 

  37. Z. Wang, Z.Q. Zhou, L. Zhang, J.Y. Hu, Z.R. Zhang and M.X. Lu, Effect of pH on the Electrochemical Behaviour and Passive Film Composition of 316l Stainless Steel, Acta Metall Sin, 2018, 32, p 585–598.

    Article  Google Scholar 

  38. L. Liu, Y. Li and F.H. Wang, Influence of Nanocrystallization on Passive Behavior of Ni-Based Superalloy in Acidic Solutions, Electrochim. Acta, 2007, 52, p 2392–2400.

    Article  CAS  Google Scholar 

  39. Y.X. Qiao, J. Huang, D. Huang, J. Chen, W. Liu, Z.B. Wang and Z.B. Zheng, Effects of Laser Scanning Speed on Microstructure, Microhardness and Corrosion Behavior of Laser Cladding Ni45 Coatings, J. Chem., 2020, 2020, p 1438473.

    Article  Google Scholar 

  40. H.Q. Fan, W.C. Xu, L. Wei, Z.H. Zhang, Y.B. Liu and Q. Li, Relationship Between La and Ce Additions on Microstructure and Corrosion Resistance of Hot-Dip Galvanized Steel, J. Iron Steel Res. Int., 2020, 27, p 1108–1116.

    Article  CAS  Google Scholar 

  41. D.C. Kong, A.N. Xu, C.F. Dong, F.X. Mao, K. **ao, X.G. Li and D.D. Macdonald, Electrochemical Investigation and ab Initio Computation Of Passive Film Properties on Copper in Anaerobic Sulphide Solutions, Corros Sci, 2018, 116, p 34–43.

    Article  Google Scholar 

  42. Z.X. Li, L.M. Zhang, A.L. Ma, J.X. Hu, S. Zhang, E.F. Daniel and Y.G. Zheng, Comparative Study on the Cavitation Erosion Behavior of Two Different Rolling Surfaces on 304 Stainless Steel, Tribol. Int., 2021, 159, p 106994.

    Article  Google Scholar 

  43. L.M. Zhang, Z.X. Li, J.X. Hu, A.L. Ma, S. Zhang, E.F. Daniel, A.J. Umoh, H.X. Hu and Y.G. Zheng, Understanding the Roles of Deformation-Induced Martensite of 304 Stainless Steel in Different Stages of Cavitation Erosion, Tribol. Int., 2021, 155, p 106752.

    Article  CAS  Google Scholar 

  44. Z.C. Feng, X.Q. Cheng, C.F. Dong, L. Xu and X.G. Li, Passivity of 316L Stainless Steel in Borate Buffer Solution Studied by Mott-Schottky Analysis, Atomic Absorption Spectrometry and X-ray Photoelectron Spectroscopy, Corros. Sci., 2010, 52, p 3646–3653.

    Article  CAS  Google Scholar 

  45. S. Maximovitch, Influence of Formation Conditions on Impedance Properties of Nickel Passive Layers Formed in 1 M KOH, Electrochim. Acta, 1996, 41, p 2761–2771.

    Article  CAS  Google Scholar 

  46. S.P. Carmelo Sunseri and F. Di Quarto, Photocurrent spectroscopic investigations of passive films on chromium, J. Electrochem. Soc., 1990, 137, p 2411–2417.

    Article  Google Scholar 

  47. S.J. Ahn and H.S. Kwon, Effects of Solution Temperature on Electronic Properties of Passive Film Formed on Fe in pH 8.5 Borate Buffer Solution, Electrochim. Acta, 2004, 49, p 3347–3353.

    Article  CAS  Google Scholar 

  48. Y.X. Qiao, Y.P. Chen, L.L. Li, J. Chen, X.J. Wang, L.L. Yang, H.L. Zhou, Z.B. Wang and Z.H. Guo, Corrosion Behavior of a Nickel-Free High-Nitrogen Stainless Steel With Hydrogen Charging, JOM, 2021, 73, p 1165–1172.

    Article  CAS  Google Scholar 

  49. M.S. Bakare, K.T. Voisey, M.J. Roe and D.G. McCartney, X-ray Photoelectron Spectroscopy Study of the Passive Films Formed on Thermally Sprayed and Wrought Inconel 625, Appl. Surf. Sci., 2010, 257, p 786–794.

    Article  CAS  Google Scholar 

  50. S. Hong, J.R. Lin, Y.P. Wu, J.H. Wu, Y. Zheng, Y.Q. Zhang, J.B. Cheng and W. Sun, Cavitation Erosion Characteristics at Various Flow Velocities in NaCl Medium of Carbide-Based Cermet Coatings Prepared by HVOF Spraying, Ceram. Int., 2021, 47, p 1929–1939.

    Article  CAS  Google Scholar 

  51. P. Jakupi, D. Zagidulin, J.J. Noël and D.W. Shoesmith, The Impedance Properties of the Oxide Film on the Ni-Cr-Mo Alloy-22 in Neutral Concentrated Sodium Chloride Solution, Electrochim. Acta, 2011, 56, p 6251–6259.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by National Key Research and Development Program of China (No. 2018YFC0309100), National Natural Science Foundation of China (Nos. 52001142 and 51401092) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 19KJB580010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanxin Qiao or Lanlan Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Additive Manufacturing. The issue was organized by Dr. William Frazier, Pilgrim Consulting, LLC; Mr. Rick Russell, NASA; Dr. Yan Lu, NIST; Dr. Brandon D. Ribic, America Makes; and Caroline Vail, NSWC Carderock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Shen, X., Qiao, Y. et al. Corrosion Behavior of a Selective Laser Melted Inconel 718 Alloy in a 3.5 wt.% NaCl Solution. J. of Materi Eng and Perform 30, 5506–5514 (2021). https://doi.org/10.1007/s11665-021-05909-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05909-8

Keywords

Navigation