Log in

Friction Stir Welding of 5052-H18 Aluminum Alloy: Modeling and Process Parameter Optimization

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, rolled sheets of aluminum alloy 5052-H18 were joined by friction stir welding. Several samples were welded by varying the principal parameters including tool rotational speed, linear speed, tool shoulder diameter, and pin diameter. Response surface methodology (RSM) was used as the statistical design of experiment technique for parameter optimization. A predictive model was developed to determine optimum parameters that maximize tensile strength. Results showed that the tool rotational speed was the most important parameters affecting the tensile strength of aluminum alloy 5052 joints. Maximum tensile strength was achieved using the rotational speed of 1233 rpm, the linear speed of 107 mm/min, the shoulder diameter of 12.8 mm, and the pin diameter of 1.8 mm. The difference in tensile strength between the predicted value and the measured value was 2.1%. The effect of tool rotational speed and linear speed on the size of the heat-affected zone was investigated. Consequently, a three-dimensional model was developed to predict the size of heat-affected zone and the temperature history of the material during the FSW process and the results were compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. R.S. Mishra and Z. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R Rep., 2005, 50(1–2), p 1–78.

    Article  Google Scholar 

  2. K. Jata, K. Sankaran and J. Ruschau, Friction-Stir Welding Effects on Microstructure and Fatigue of Aluminum Alloy 7050–T7451, Metall. Mater. Trans. A, 2000, 31(9), p 2181–2192.

    Article  Google Scholar 

  3. E. Taban and E. Kaluc, Comparison Between Microstructure Characteristics and Joint Performance of 5086–H32 Aluminium Alloy Welded by MIG, TIG and Friction Stir Welding Processes, Kovove Mater., 2007, 45(5), p 241.

    CAS  Google Scholar 

  4. G. Çam, Friction Stir Welded Structural Materials: Beyond Al-alloys, Int. Mater. Rev., 2011, 56(1), p 1–48.

    Article  Google Scholar 

  5. O. Ojo et al., Cyclic Lateral Behavior of Friction Stir Spot Welds of AA2219 Aluminum Alloy: Impact of Inherent Flow Defects, Kovove Mater., 2019, 57, p 329–342.

    Article  CAS  Google Scholar 

  6. R. Leal et al., Material Flow in Heterogeneous Friction Stir Welding of Thin Aluminium Sheets: Effect of Shoulder Geometry, Mater. Sci. Eng. A, 2008, 498(1–2), p 384–391.

    Article  Google Scholar 

  7. H.M. Jamalian et al., Study on the Effects of Friction Stir Welding Process Parameters on the Microstructure and Mechanical Properties of 5086–H34 Aluminum Welded Joints, Int. J. Adv. Manuf. Technol., 2016, 83(1–4), p 611–621.

    Article  Google Scholar 

  8. F. Zhang et al., Effect of Welding Parameters on Microstructure and Mechanical Properties of Friction Stir Welded Joints of a Super High Strength Al–Zn–Mg–Cu Aluminum Alloy, Mater. Des., 2015, 67, p 483–491.

    Article  CAS  Google Scholar 

  9. M.M. Khalilabad et al., Effect of Tool Geometry and Welding Speed on Mechanical Properties of Dissimilar AA2198–AA2024 FSWed Joint, J. Manuf. Process., 2018, 34, p 86–95.

    Article  Google Scholar 

  10. N.Z. Khan, Z.A. Khan and A.N. Siddiquee, Effect of Shoulder Diameter to Pin Diameter (D/d) Ratio on Tensile Strength of Friction Stir Welded 6063 Aluminium Alloy, Mater. Today Proc., 2015, 2(4–5), p 1450–1457.

    Article  Google Scholar 

  11. V. Gunaraj and N. Murugan, Application of response surface methodology for predicting weld bead quality in submerged arc welding of pipes, J. Mater. Process. Technol., 1999, 88(1–3), p 266–275.

    Article  Google Scholar 

  12. M.M. Krishnan et al., Prediction of Optimum Welding Parameters for FSW of Aluminium Alloys AA6063 and A319 Using RSM and ANN, Mater. Today Proc., 2018, 5(1), p 716–723.

    Article  Google Scholar 

  13. D.B. Naik et al., Optimization of Friction Stir Welding Parameters to Improve Corrosion Resistance and Hardness of AA2219 Aluminum Alloy Welds, Mater. Today Proc., 2019, 15, p 76–83.

    Article  Google Scholar 

  14. C. Rajendran et al., Data Set on Prediction of Friction Stir Welding Parameters to Achieve Maximum Strength of AA2014-T6 Aluminium Alloy Joints, Data Brief, 2019, 23, p 103735.

    Article  CAS  Google Scholar 

  15. X. He, F. Gu and A. Ball, A Review of Numerical Analysis of Friction Stir Welding, Prog. Mater Sci., 2014, 65, p 1–66.

    Article  Google Scholar 

  16. D.M. Neto and P. Neto, Numerical Modeling of Friction Stir Welding Process: A Literature Review, Int. J. Adv. Manuf. Technol., 2013, 65(1–4), p 115–126.

    Article  Google Scholar 

  17. K. Elangovan, V. Balasubramanian and S. Babu, Predicting Tensile Strength of Friction Stir Welded AA6061 Aluminium Alloy Joints by a Mathematical Model, Mater. Des., 2009, 30(1), p 188–193.

    Article  CAS  Google Scholar 

  18. P. Asadi, M.K.B. Givi and M. Akbari, Simulation of Dynamic Recrystallization Process During Friction Stir Welding of AZ91 Magnesium Alloy, Int. J. Adv. Manuf. Technol., 2016, 83(1–4), p 301–311.

    Article  Google Scholar 

  19. Y.S. Sato et al., FIB-Assisted TEM Study of an Oxide Array in the Root of a Friction Stir Welded Aluminium Alloy, Scripta Mater., 2004, 50(3), p 365–369.

    Article  CAS  Google Scholar 

  20. A. Shuaib, Mechanical Properties of Al–2.5 Mg–0.1 Mn–Si–Cr–Fe Alloys, Mater. Design, 2002, 23(2), p 181–187.

    Article  CAS  Google Scholar 

  21. R. Ravindran, K. Manonmani and R. Narayanasamy, An Analysis of Void Coalescence in AL 5052 Alloy Sheets Annealed at Different Temperatures Formed Under Different Stress Conditions, Mater. Sci. Eng. A, 2009, 507(1–2), p 252–267.

    Article  Google Scholar 

  22. Ø. Frigaard, Ø. Grong and O. Midling, A Process Model for Friction Stir Welding of Age Hardening Aluminum Alloys, Metall. Mater. Trans. A, 2001, 32(5), p 1189–1200.

    Article  Google Scholar 

  23. N. Dialami et al., Enhanced Friction Model for Friction Stir Welding (FSW) Analysis: Simulation and Experimental Validation, Int. J. Mech. Sci., 2017, 133, p 555–567.

    Article  Google Scholar 

  24. S. Sadeghi et al., Using Ultrasonic Waves and Finite Element Method to Evaluate Through-Thickness Residual Stresses Distribution in the Friction Stir Welding of Aluminum Plates, Mater. Design, 2013, 52, p 870–880.

    Article  CAS  Google Scholar 

  25. N. Jalili, H.B. Tabrizi and M.M. Hosseini, Experimental and Numerical Study of Simultaneous Cooling with CO2 Gas During Friction Stir Welding of Al-5052, J. Mater. Process. Technol., 2016, 237, p 243–253.

    Article  CAS  Google Scholar 

  26. M. Barla and J. Jaidi, Influence of Strain Hardening Behaviour in Friction Stir Welded Joints of Aluminium-Alloy Plates, Mater. Today Proc., 2018, 5(2), p 3851–3860.

    Article  CAS  Google Scholar 

  27. M. Aliha et al., Mechanical and Metallurgical Properties of Dissimilar AA6061-T6 and AA7277-T6 Joint Made by FSW Technique, Int. J. Adv. Manuf. Technol., 2016, 86(9–12), p 2551–2565.

    Article  Google Scholar 

  28. S. Gao, C. Wu and G. Padhy, Material Flow, Microstructure and Mechanical Properties of Friction Stir Welded AA 2024-T3 Enhanced by Ultrasonic Vibrations, J. Manuf. Process., 2017, 30, p 385–395.

    Article  Google Scholar 

  29. J. Tang and Y. Shen, Numerical Simulation and Experimental Investigation of Friction Stir Lap Welding Between Aluminum Alloys AA2024 and AA7075, J. Alloys Compd., 2016, 666, p 493–500.

    Article  CAS  Google Scholar 

  30. Y.G. Ko and K. Hamad, Microstructure Stability and Mechanical Properties of Ultrafine Grained 5052 Al Alloy Fabricated by Differential Speed Rolling, Mater. Sci. Eng. A, 2018, 733, p 24–27.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Blais.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MohammadiSefat, M., Ghazanfari, H. & Blais, C. Friction Stir Welding of 5052-H18 Aluminum Alloy: Modeling and Process Parameter Optimization. J. of Materi Eng and Perform 30, 1838–1850 (2021). https://doi.org/10.1007/s11665-021-05499-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05499-5

Keywords

Navigation