Log in

Fine Secondary α Phase-Induced Strengthening in a Ti-5.5Al-2Zr-1Mo-2.5V Alloy Pipe with a Widmanstätten Microstructure

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, the Widmanstätten microstructure in an extruded near-α titanium alloy (Ti-5.5Al-2Zr-1Mo-2.5V) pipe was changed effectively by solid solution treatment at 920 °C for 2 h. The treatment produced intermittent lamellar α and discontinuous α grain boundaries (αGB), and aging at 450 °C for 2 h introduced a high density of nanosized secondary α (αs). The microstructure consisted of the lamellar α, αGB and transformed β demonstrated a good combination of yield strength 1064 MPa and elongation 10.5%. Severe plastic deformation occurred inside the lamellar α during the tensile process, resulting in high-density dislocation tangles and dislocation cells. Furthermore, the stretching imposed on the tensile sample before aging generated dislocations, which piled up near the α/β interface. Thus, a coordinated deformation between lamellar α and transformed β, and the resultant strain partition contributed to an improvement in the ductility. Moreover, dislocation motion was effectively obstructed near the α/β interfaces, which dramatically strengthened the alloy. A solid solution at a middle temperature in the α + β region and aging at a low temperature provided an effective way to improve the strength and ductility simultaneously in titanium alloys with Widmanstätten microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R.W. Schutz and H.B. Watkins, Recent Developments in Titanium Alloy Application in the Energy Industry, Mater. Sci. Eng. A, 1998, 243, p 305–315

    Google Scholar 

  2. V.N. Moiseev, Structural Titanium Alloys in Modern Mechanical Engineering, Met. Sci. Heat Treat., 2004, 46, p 115–120

    CAS  Google Scholar 

  3. R.D. Kane, S. Craig, and A. Venkatesh, Titanium Alloys for Oil and Gas Service: A Review, in CORROSION 2009, NACE International, Atlanta, Georgia (2009), p. 21

  4. C. Leyens and M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications, Wiley, New York, 2003

    Google Scholar 

  5. R.Z. Li, C. Feng, L. Jiang, and Y.Q. Cao, Research Status and Development of Titanium Alloy Drill Pipes, Mater. Sci. Forum., 2019, 944, p 903–909

    Google Scholar 

  6. J.E. Smith, R.B. Chandler, and P.L. Boster, Titanium Drill Pipe for Ultra-Deep and Deep Directional Drilling, in SPE/IADC Drilling Conference (Society of Petroleum Engineers, Amsterdam, Netherlands, 2001), p. 14

  7. J.E. Smith, R.W. Schutz, and E.I. Bailey. Development of Titanium Drill Pipe for Short Radius Drilling, in IADC/SPE Drilling Conference (Society of Petroleum Engineers, New Orleans, Louisiana, 2000), p. 11

  8. M. Jellison and N. GrantPrideco, Lightweight, Ultra-High-Strength Drill Pipe May Meet Demands of ERD, Critical Deep Drilling, Drill. Contract., 2009, 3, p 53–56

    Google Scholar 

  9. R. Gaur, R.K. Gupta, V. AnilKumar, and S.S. Banwait, Effect of Cold Rolling and Heat Treatment on Microstructure and Mechanical Properties of Ti-4Al-1Mn Titanium Alloy, J. Mater. Eng. Perform., 2018, 27, p 3217–3233

    CAS  Google Scholar 

  10. Y. Yu, S. Hui, W. Ye, and B. **ong, Mechanical Properties and Microstructure of an α + β Titanium Alloy with High Strength and Fracture Toughness, Rare Met., 2009, 28, p 346–349

    CAS  Google Scholar 

  11. P.F. Gao, G. Qin, X.X. Wang, Y.X. Li, M. Zhan, G.J. Li, and J.S. Li, Dependence of Mechanical Properties on the Microstructural Parameters of TA15 Titanium Alloy with Tri-Modal Microstructure, Mater. Sci. Eng. A, 2019, 739, p 203–213

    CAS  Google Scholar 

  12. P. Guo, Y. Zhao, W. Zeng, and J. Liu, Effect of Microstructure on the Fatigue Crack Propagation Behavior of TC4-DT Titanium Alloy, J. Mater. Eng. Perform., 2015, 24, p 1865–1870

    CAS  Google Scholar 

  13. Z.N. Lei, P.F. Gao, H.W. Li, Y. Cai, Y.X. Li, and M. Zhan, Comparative Analyses of the Tensile and Damage Tolerance Properties of Tri-Modal Microstructure to Widmanstätten and Bimodal Microstructures of TA15 Titanium Alloy, J. Alloys Compd., 2019, 788, p 831–841

    CAS  Google Scholar 

  14. C. Li, J. Chen, W. Li, J.J. He, W. Qiu, Y.J. Ren, J.L. Chen, and J.H. Chen, Study on the Relationship Between Microstructure and Mechanical Property in a Metastable β Titanium Alloy, J. Alloys Compd., 2015, 627, p 222–230

    CAS  Google Scholar 

  15. A. Gheysarian and M. Abbasi, The Effect of Aging on Microstructure, Formability and Springback of Ti-6Al-4V Titanium Alloy, J. Mater. Eng. Perform., 2017, 26, p 374–382

    CAS  Google Scholar 

  16. A.P. Mouritz, Titanium Alloys for Aerospace Structures and Engines, Introduction to Aerospace Materials, Woodhead Publishing, 2012, p 202–223

  17. G. Lütjering and J.C. Williams, Titanium, Springer, Berlin, 2007, p 227–229

    Google Scholar 

  18. Y. Chong, G. Deng, S. Gao, J. Yi, A. Shibata, and N. Tsuji, Yielding Nature and Hall-Petch Relationships in Ti-6Al-4V Alloy with Fully Equiaxed and Bimodal Microstructures, Scr. Mater., 2019, 172, p 77–82

    CAS  Google Scholar 

  19. H. Wu, Z. Sun, J. Cao, and Z. Yin, Microstructure and Mechanical Behavior of Heat-Treated and Thermomechanically Processed TA15 Ti Alloy Composites, J. Mater. Eng. Perform., 2019, 28, p 788–799

    CAS  Google Scholar 

  20. I. Weiss and S.L. Semiatin, Thermomechanical Processing of Alpha Titanium Alloys: An Overview, Mater. Sci. Eng. A, 1999, 263, p 243–256

    Google Scholar 

  21. G. Lütjering, Influence of Processing on Microstructure and Mechanical Properties of (α + β) Titanium Alloys, Mater. Sci. Eng. A., 1998, 243, p 32–45

    Google Scholar 

  22. J. Fan, J.S. Li, H. Kou, K. Hua, and B. Tang, The Interrelationship of Fracture Toughness and Microstructure in a New Near β Titanium Alloy Ti-7Mo-3Nb-3Cr-3Al, Mater. Charact., 2014, 96, p 93–99

    CAS  Google Scholar 

  23. J.D. Paramore, Z.Z. Fang, P. Sun, M. Koopman, K.S.R. Chandran, and M. Dunstan, A Powder Metallurgy Method for Manufacturing Ti-6Al-4V with Wrought-Like Microstructures and Mechanical Properties Via Hydrogen Sintering and Phase Transformation (HSPT), Scr. Mater., 2015, 107, p 103–106

    CAS  Google Scholar 

  24. H.Z. Niu, H.R. Zhang, Q.Q. Sun, and D. Zhang, Breaking Through the Strength-Ductility Trade-Off Dilemma in Powder Metallurgy Ti 6Al 4V Titanium Alloy, Mater. Sci. Eng. A, 2019, 754, p 361–369

    CAS  Google Scholar 

  25. Y. Chen, Z. Du, S. **ao, L. Xu, and J. Tian, Effect of Aging Heat Treatment on Microstructure and Tensile Properties of a New β High Strength Titanium Alloy, J. Alloys Compd., 2014, 586, p 588–592

    CAS  Google Scholar 

  26. S.A. Mantri, D. Choudhuri, A. Behera, J.D. Cotton, N. Kumar, and R. Banerjee, Influence of Fine-Scale Alpha Precipitation on the Mechanical Properties of the Beta Titanium Alloy Beta-21S, Metall. Mater. Trans. A., 2015, 46, p 2803–2808

    CAS  Google Scholar 

  27. K. Yue, L. Jianrong, Z. Shaoxiang, W. Lei, W. Qingjiang, and Y. Rui, Origins of Different Tensile Behaviors Induced by Cooling Rate in a Near Alpha Titanium Alloy Ti65, Materialia, 2018, 1, p S603383428

    Google Scholar 

  28. S.A. Mantri, D. Choudhuri, T. Alam, G.B. Viswanathan, J.M. Sosa, H.L. Fraser, and R. Banerjee, Tuning the Scale of α Precipitates in β-Titanium Alloys for Achieving High Strength, Scr. Mater., 2018, 154, p 139–144

    CAS  Google Scholar 

  29. M.T. Jia, D.L. Zhang, B. Gabbitas, J.M. Liang, and C. Kong, A Novel Ti-6Al-4V Alloy Microstructure with Very High Strength and Good Ductility, Scr. Mater., 2015, 107, p 10–13

    CAS  Google Scholar 

  30. F. Geng, M. Niinomi, and M. Nakai, Observation of Yielding and Strain Hardening in a Titanium Alloy Having High Oxygen Content, Mater. Sci. Eng. A, 2011, 528, p 5435–5445

    CAS  Google Scholar 

  31. W.Y. Guo, H. **ng, J. Sun, X.L. Li, J.S. Wu, and R. Chen, Evolution of Microstructure and Texture during Recrystallization of the Cold-Swaged Ti-Nb-Ta-Zr-O Alloy, Met. Mater. Trans. A., 2008, 39, p 672–678

    Google Scholar 

  32. Y. Okazaki, Y. Ito, A. Ito, and T. Tateishi, Effect of Alloying Elements on Mechanical Properties of Titanium Alloys for Medical Implants, Mater. Trans. JIM, 1993, 34, p 1217–1222

    Google Scholar 

  33. G.C. Obasi, S. Birosca, D.G. Leo Prakash, J.Q. Da Fonseca, and M. Preuss, The Influence of Rolling Temperature on Texture Evolution and Variant Selection During α → β→ α Phase Transformation in Ti-6Al-4V, Acta Mater., 2012, 60, p 6013–6024

    CAS  Google Scholar 

  34. Z. Sun, H. Wu, J. Sun, and C. **g, Evolution of Lamellar α Phase During Two-Phase Field Heat Treatment in TA15 Alloy, Int. J. Hydrog. Energy, 2017, 42, p 20849–20856

    CAS  Google Scholar 

  35. H. Wu, Z. Sun, J. Cao, and Z. Yin, Formation and Evolution of Tri-Modal Microstructure During Dual Heat Treatment for TA15 Ti-Alloy, J. Alloys Compd., 2019, 786, p 894–905

    CAS  Google Scholar 

  36. Z. Zhao, J. Chen, H. Tan, G. Zhang, X. Lin, and W. Huang, Achieving Superior Ductility for Laser Solid Formed Extra Low Interstitial Ti-6Al-4V Titanium Alloy Through Equiaxial Alpha Microstructure, Scr. Mater., 2018, 146, p 187–191

    CAS  Google Scholar 

  37. X. Gao, W. Zeng, Y. Wang, Y. Long, S. Zhang, and Q. Wang, Evolution of Equiaxed Alpha Phase During Heat Treatment in a Near Alpha Titanium Alloy, J. Alloys Compd., 2017, 725, p 536–543

    CAS  Google Scholar 

  38. Z. Du, S. **ao, L. Xu, J. Tian, F. Kong, and Y. Chen, Effect of Heat Treatment on Microstructure and Mechanical Properties of a New β High Strength Titanium Alloy, Mater. Des., 2014, 55, p 183–190

    CAS  Google Scholar 

  39. Y. Zhang, J.P. Liu, S.Y. Chen, X. **e, P.K. Liaw, K.A. Dahmen, J.W. Qiao, and Y.L. Wang, Serration and Noise Behaviors in Materials, Prog. Mater. Sci., 2017, 90, p 358–460

    CAS  Google Scholar 

  40. W.C.P. ASTM International. ASTM B861 - 14 Standard Specification for Titanium and Titanium Alloy Seamless Pipe (2014), pp. B814–B861

  41. Q.Y. Sun and H.C. Gu, Tensile and Low-Cycle Fatigue Behavior of Commercially Pure Titanium and Ti-5Al-2.5Sn Alloy at 293 and 77 K, Mater. Sci. Eng. A., 2001, 316, p 80–86

    Google Scholar 

  42. H.F. Lu, K.Y. Luo, L.J. Wu, C.Y. Cui, and J.Z. Lu, Effects of Service Temperature on Tensile Properties and Microstructural Evolution of CP Titanium Subjected to Laser Shock Peening, J. Alloys Compd., 2019, 770, p 732–741

    CAS  Google Scholar 

  43. S. Zherebtsov, E. Kudryavtsev, S. Kostjuchenko, S. Malysheva, and G. Salishchev, Strength and Ductility-Related Properties of Ultrafine Grained Two-Phase Titanium Alloy Produced by Warm Multiaxial Forging, Mater. Sci. Eng. A, 2012, 536, p 190–196

    CAS  Google Scholar 

  44. W. Lee, T. Chen, and H. Hwang, Impact Response and Microstructural Evolution of Biomedical Titanium Alloy Under Various Temperatures, Metall. Mater. Trans. A., 2008, 2008(39), p 1435–1448

    Google Scholar 

  45. M. Wan, Y. Zhao, W. Zeng, and G. Cai, Effects of Cold Pre-Deformation on Aging Behavior and Mechanical Properties of Ti-1300 Alloy, J. Alloys Compd., 2015, 619, p 383–388

    CAS  Google Scholar 

  46. Z. Lincai, D. **aoming, Y. Wei, Z. Man, and S. Zhenya, Effect of Prestrain on Precipitation Behaviors of Ti-2.5Cu Alloy, High Temp. Mater. Process., 2017, 37, p 487–493

    Google Scholar 

  47. W. Zhu, J. Lei, Z. Zhang, Q. Sun, W. Chen, L. **ao, and J. Sun, Microstructural Dependence of Strength and Ductility in a Novel High Strength β Titanium Alloy with Bi-Modal Structure, Mater. Sci. Eng. A, 2019, 762, p 138086

    CAS  Google Scholar 

  48. A.H. Rosenberger, A. Madsen, and H. Ghonem, Aging Effects on the Creep Behavior of the Near-Alpha Titanium Alloy Ti-1100, J. Mater. Eng. Perform., 1995, 4, p 182–187

    CAS  Google Scholar 

  49. E.O. Hall, The Deformation and Ageing of Mild Steel: III, Discussion of Results, Proc. Phys. Soc. Sect. B., 1951, 64, p 747–753

    Google Scholar 

  50. X. Wen, M. Wan, C. Huang, Y. Tan, M. Lei, Y. Liang, and X. Cai, Effect of Microstructure on Tensile Properties, Impact Toughness and Fracture Toughness of TC21 Alloy, Mater. Des., 2019, 180, p 107898

    CAS  Google Scholar 

  51. Z.X. Zhang, S.J. Qu, A.H. Feng, and J. Shen, Achieving Grain Refinement and Enhanced Mechanical Properties in Ti-6Al-4V Alloy Produced by Multidirectional Isothermal Forging, Mater. Sci. Eng. A, 2017, 692, p 127–138

    CAS  Google Scholar 

  52. J. Málek, F. Hnilica, J. Veselý, B. Smola, and R. Medlín, The Effect of Annealing Temperature on the Properties of Powder Metallurgy Processed Ti-35Nb-2Zr-0.5O Alloy, J. Mech. Behav. Biomed., 2017, 75, p 252–261

    Google Scholar 

  53. P. Luo, D.T. McDonald, W. Xu, S. Palanisamy, M.S. Dargusch, and K. **a, A Modified Hall-Petch Relationship in Ultrafine-Grained Titanium Recycled from Chips by Equal Channel Angular Pressing, Scr. Mater., 2012, 66, p 785–788

    CAS  Google Scholar 

  54. Z. Wang, Cyclic Deformation Response of Planar-Slip Materials and a New Criterion for the Wavy-to-Planar-Slip Transition, Philos. Mag., 2004, 84, p 351–379

    CAS  Google Scholar 

  55. D. Caillard, M. Gaumé, and F. Onimus, Glide and Cross-Slip of a-Dislocations in Zr and Ti, Acta Mater., 2018, 155, p 23–34

    CAS  Google Scholar 

  56. C.S.G. Lütjering, Influence of α Layers at β Grain Boundaries on Mechanical Properties of Ti-Alloys, Mater. Sci. Eng. A, 2001, 319, p 393–397

    Google Scholar 

  57. J.W. Foltz, B. Welk, P.C. Collins, H.L. Fraser, and J.C. Williams, Formation of Grain Boundary α in β Ti Alloys: Its Role in Deformation and Fracture Behavior of These Alloys, Metall. Mater. Trans. A, 2011, 42, p 645–650

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Project supported by State Key Laboratory of Powder Metallurgy of Central South University and by the National Science and Technology Major Project (2016ZX05020-002), Science and Technology Exploration Project of China National Petroleum Corporation (2018D-5010-08).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun Feng or Huiqun Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, G., Feng, C., Liu, H. et al. Fine Secondary α Phase-Induced Strengthening in a Ti-5.5Al-2Zr-1Mo-2.5V Alloy Pipe with a Widmanstätten Microstructure. J. of Materi Eng and Perform 29, 1869–1881 (2020). https://doi.org/10.1007/s11665-020-04715-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04715-y

Keywords

Navigation