Log in

Microstructure-Property Correlations in Fiber Laser Welded Nb-Ti Microalloyed C-Mn Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Mechanical Performance of traditional gas-shielded arc welded joints of 700 MPa grade microalloyed C-Mn steel cannot meet service requirements. Laser welding, with its characteristic high energy density, is known to improve the welding performance of experimental steels. In the present study, Nb-Ti microalloyed steel with a thickness of 4.5 mm was welded using a 4 kW fiber laser. The microstructure, precipitation, and mechanical properties of the welded joints were studied. The hardness and tensile strength of the welded joints were higher than those of the base metal (BM). The microstructure of the fusion zone (FZ) and coarse grain heat affected zone (CGHAZ) was lath martensite (LM), while the microstructure of the fine grain HAZ and mixed grain HAZ consisted of ferrite and martensite/austenite islands. Although LM was observed in both the FZ and CGHAZ, the hardness and calculated tensile strength of the FZ were lower than those of the CGHAZ, due to a reduction in solid solution strengthening by element loss and the dissolution of high-hardness precipitates in FZ. Most precipitates such as [(Nb,Ti)C and (Nb,Ti)(C,N)] that were present in the BM were dissolved, which led to an increase in C and N in solid solution in the FZ. Thus, the elastic modulus of the FZ was higher than that of the BM. Similarly, the elastic modulus of the CGHAZ was higher than that of the BM due to the segregation of C and N atoms during the welding process. The toughness of the FZ was superior to that of the BM, and the toughness of the HAZ approached 91% of that of the BM. The change in toughness primarily depended on the microstructural refinement, the increase in the fraction of grains with high misorientation, the residual austenite in the FZ and CGHAZ, and the dissolution of coarse precipitates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W. Xu, D. Westerbaan, S.S. Nayak, D.L. Chen, F. Goodwin, E. Biro, and Y. Zhou, Microstructure and Fatigue Performance of Single and Multiple Linear Fiber Laser Welded DP980 Dual-Phase Steel, Mater. Sci. Eng., A, 2012, 553, p 51–58

    Article  Google Scholar 

  2. R. Miranda, A. Costa, L. Quintino, D. Yapp, and D. Iordachescu, Characterization of Fiber Laser Welds in X100 Pipeline Steel, Mater. Des., 2009, 30, p 2701–2707

    Article  Google Scholar 

  3. M. Sokolov, A. Salminen, M. Kuznetsov, and I. Tsibulskiy, Laser Welding and Weld Hardness Analysis of Thick Section S355 Structural Steel, Mater. Des., 2011, 32, p 5127–5131

    Article  Google Scholar 

  4. M.J. Kang and C.H. Kim, Weld Strength of Laser-Welded Hot-Press-Forming Steel, J. Laser Appli., 2012, 24(2), p 022004-1-6

    Article  Google Scholar 

  5. M.J. Zhang, G.Y. Chen, Y. Zhou, and S.H. Liao, Optimization of Deep Penetration Laser Welding of Thick Stainless Steel with a 10 kW Fiber Laser, Mater. Des., 2014, 53, p 568–576

    Article  Google Scholar 

  6. L. Zhang, J.Z. Lu, K.Y. Luo, A.X. Feng, F.Z. Dai, J.S. Zhong, M. Luo, and Y.K. Zhang, Residual Stress, Micro-Hardness and Tensile Properties of ANSI, 304 Stainless Steel Thick Sheet by Fiber Laser Welding, Mater. Sci. Eng., A, 2013, 561, p 136–144

    Article  Google Scholar 

  7. W. Guo, D. Crowther, J.A. Francis, and L. Li, Microstructure and Mechanical Properties of Laser Welded S960 High Strength Steel, Mater. Des., 2015, 85, p 534–548

    Article  Google Scholar 

  8. K.Y. Lin, H.Q. Hang, Z.X. Meng, and C.M. Hui, Influence of Nanoparticle Reinforcements on the Strengthening Mechanisms of an Ultrafine-Grained Dual Phase Steel Containing Titanium, Mater. Des., 2013, 44, p 331–339

    Article  Google Scholar 

  9. P.W. Hsu, F.H. Kao, S.H. Wang, J.R. Yang, H.Y. Chang, Y.M. Wang, and Q.X. Lin, Twinned Formation in Weld Metal of Titanium Bearing Nano Precipitated High Strength Steel, Mater. Chem. Phys., 2012, 136, p 1103–1108

    Article  Google Scholar 

  10. C.Y. Chen, C.C. Chen, and J.R. Yang, Microstructure Characterization of Nanometer Carbides Heterogeneous Precipitation in Ti-Nb and Ti-Nb-Mo Steel, Mater. Charact., 2014, 88, p 69–79

    Article  Google Scholar 

  11. M.P. Phaniraj, Y.M. Shin, J. Lee, N.H. Goo, D.I. Kim, J.Y. Suh, W.S. Jung, J.H. Shim, and I.S. Choi, Development of High Strength Hot Rolled Low Carbon Copper-Bearing Steel Containing Nanometer Sized Carbides, Mater. Sci. Eng., A, 2015, 633, p 1–8

    Article  Google Scholar 

  12. R.D.K. Misra, H. Nathani, J.E. Harmann, and F. Siciliano, Microstructural Evolution in a New 770 MPa Hot Rolled Nb-Ti Microallyed Steel, Mater. Sci. Eng., A, 2005, 394, p 339–352

    Article  Google Scholar 

  13. V.S.A. Challa, W.H. Zhou, R.D.K. Misra, R. OMalley, and S.G. Jansto, The Effect of Coiling Temperature on the Microstructure and Mechanical Properties of a Niobium-Titanium Microalloyed Steel Processed via Thin Slab Casting, Mater. Sci. Eng., A, 2014, 394, p 143–153

    Article  Google Scholar 

  14. J.H. Lee, S.H. Park, H.S. Kwon, G.S. Kim, and C.S. Lee, Laser, Tungsten Inert Gas, and Metal Active Gas Welding of DP780 Steel: Comparison of Hardness, Tensile Properties and Fatigue Resistance, Mater. Des., 2014, 64, p 559–565

    Article  Google Scholar 

  15. X.N. Wang, H.S. Di, C. Zhang, and L.X. Du, X.X Dong, Study of the Weldability of 780 MPa Super-High Strength Heavy-Duty Truck Crossbeam Steel, J. Iron. Steel Res. Int., 2012, 19(6), p 64–69

    Article  Google Scholar 

  16. X.N. Wang, Q. Sun, L.X. Du, and H.S. Di, 700 MPa Grade Steel for Heavy-Duty Truck Development and Carriage Lightweight Design, Rev. Adv. Mater. Sci., 2013, 33, p 187–194

    Google Scholar 

  17. S. Talas, The Assessment of Carbon Equivalent Formulas in Predicting the Properties of Steel Weld Metals, Mater. Des., 2010, 31, p 2649–2653

    Article  Google Scholar 

  18. M. Zhang, X.N. Wang, G.J. Zhu, C.J. Chen, J.X. Hou, S.H. Zhang, and H.M. **g, Effect of Laser Welding Process Parameters on Microstructure and Mechanical Properties on Butt Joint of New Hot-Rolled Nano-Scale Precipitate Strengthen Steel, Acta Metall. Sini. (Engl. Lett.), 2014, 27(3), p 521–529

    Article  Google Scholar 

  19. X.N. Wang, C.J. Chen, H.S. Wang, S.H. Zhang, M. Zhang, and X. Luo, Microstructure Formation and Precipitation in Laser Welding of Microalloyed C-Mn Steel, J. Mater. Process. Technol., 2015, 226, p 106–114

    Article  Google Scholar 

  20. L. Zhang and T. Kannengiesser, Austenite Grain Growth and Microsturcture Control in Simulated Heat Affected Zones of Microalloyed HSLA Steel, Mater. Sci. Eng., A, 2014, 613, p 326–335

    Article  Google Scholar 

  21. Y.M. Li, B.X. Yang, X.H. Cui, C.G. Han, and H.J. Shang, Hardness Control for Base Material and Welded Jointss of 9%–12% Martensite Steel, Therm. Power Gener., 2010, 39, p 57–60

    Google Scholar 

  22. A.G. Grigoryants, I.N. Shiganov, A.l. Misyurov. In: Grigoryants AG, editor. Technological Processes of Laser Welding. Moscow: Bauman Moscow State Technical University; 2006. [Russian]

  23. X.N. Wang, L.X. Du, H.S. Di, H. **e, and D.H. Gu, Effect of Deformation on Continuous Cooling Phase Transformation Behaviors of 780 MPa Nb-Ti Ultra-High Strength Steel, Steel Res. Int., 2011, 82(12), p 1417–1424

    Article  Google Scholar 

  24. S. Kou, Weld. Metall., Wiley, Manhattan, 2002

    Book  Google Scholar 

  25. S. Liu and D.L. Olson, The Role of Inclusions in Controlling HSLA Steel Weld Microstructure, Weld. Res. Suppl., 1986, 65(6), p 139–150

    Google Scholar 

  26. D. Parkes, W. Xu, D. Westerbaan, S.S. Nayak, Y. Zhou, F. Goodwin, S. Bhole, and D.L. Chen, Microstructure and Fatigue Properties of Fiber Laser Welded Dissimilar Joints Between High Strength Low Alloy and Dual-Phase Steels, Mater. Des., 2013, 51, p 665–675

    Article  Google Scholar 

  27. S.S. Nayaka, V.H. BaltazarHernandeza, Y. Okitaa, and Y. Zhou, Microstructure–Hardness Relationship in the Fusion Zone of TRIP Steel Welds, Mater. Sci. Eng., A, 2012, 551, p 73–81

    Article  Google Scholar 

  28. S.H. Kim, D.H. Kang, and T.W. Kim, Fatigue Crack Growth Behavior of the Simulated HAZ of 800 MPa Grade High-Performance Steel, Mater. Sci. Eng., A, 2011, 528, p 2331–2338

    Article  Google Scholar 

  29. N. Yurioka and K. Kojima, A Predictive Formula of Weld Metal Tensile Strength, Q. J. Jp Weldi.Soc., 2004, 22, p 53–60

    Article  Google Scholar 

  30. A.M. Paniagua-Mercado, V.M. Lopez-Hirata, and M.L.S. Munoz, Influence of the Chemical Composition of Flux on the Microstructure and Tensile Properties of Submerged-Arc Welds, J. Mater. Process. Technol., 2005, 169, p 346–351

    Article  Google Scholar 

  31. L.Y. Lan, C.L. Qiu, and D.W. Zhao, Structure and Micromechanical Properties of a Weld Joint Using Steel with Low Sensitivity to Weld Cracking, J. Northeastern Univ. Nat. Sci., 2011, 32(4), p 505–508

    Google Scholar 

  32. Y.J. Chao, J.D. Ward, Jr., and R.G. Sands, Charpy Impact Energy, Fracture Toughness and Ductile–Brittle Transition Temperature of Dual-Phase 590 Steel, Mater. Des., 2007, 28, p 551–557

    Article  Google Scholar 

  33. L. Wang, Mech. Prope. Mater., Northeastern University Press, Shenyang, 2005, p 132–152

    Google Scholar 

  34. I. de Diego-Calderón, M.J. Santofimia, J.M. Molina-Aldareguia, M.A. Monclús, and I. Sabirov, Deformation Behavior of a High Strength Multiphase Steel at Macro- and Micro-Scales, Mater. Sci. Eng., A, 2014, 611, p 201–211

    Article  Google Scholar 

  35. J.G. Speer, F.C. Rizzo Assunção, D.K. Matlock, and D.V. Edmonds, The “Quenching and Partitioning” Process: Background and Recent Progress, Materi. Res., 2005, 8(4), p 417–423

    Article  Google Scholar 

  36. J.S. Byun, J.H. Shim, Y.W. Cho, and D.N. Lee, Non-metallic Inclusion and Intragranular Nucleation of Ferrite in Ti-killed C-Mn Steel, Acta Mater., 2003, 51(6), p 1593–1606

    Article  Google Scholar 

  37. E. Bonnevie, G. Ferriere, A. Ikhlef, D. Kaplan, and J.M. Orain, Morphological Aspects of Martensite–Austenite Constituents in Intercritical and Coarse Grain Heat Affected Zones of Structural Steels, Mater. Sci. Eng., A, 2004, 385, p 352–358

    Article  Google Scholar 

  38. S.M. Hong, E.K. Park, J.J. Park, M.K. Lee, and J.G. Lee, Effect of Nano-sized TiC Particle Addition on Microstructure and Mechanical Properties of SA-106B Carbon Steel, Mater. Sci. Eng., A, 2015, 643, p 37–46

    Article  Google Scholar 

  39. M.R. Akbarpour, E. Salahi, F. Alikhani Hesari, H.S. Kim, and A. Simchi, Effect of Nanoparticle Content on the Microstructural and Mechanical Properties of Nano-SiC Dispersed Bulk Ultrafine-Grained Cu Matrix Composites, Mater. Des., 2013, 52, p 881–887

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NO. 51775102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Shuang Di.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Nie, XK., Li, Y. et al. Microstructure-Property Correlations in Fiber Laser Welded Nb-Ti Microalloyed C-Mn Steel. J. of Materi Eng and Perform 27, 847–856 (2018). https://doi.org/10.1007/s11665-018-3138-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3138-8

Keywords

Navigation