Log in

The Effect of Al2Cu Precipitate Size on Microstructure and Mechanical Properties of Al-2 wt.%Cu Alloys Fabricated by ARB

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of pre-existing precipitates on microstructure evolution, mechanical properties, and fracture behavior of Al-2 wt.%Cu alloy during accumulative roll-bonding (ARB) process was investigated. Aging treatment was done on Al-2 wt.%Cu alloy in order to produce the nano-particle size precipitates. The microstructure evolution was studied using transmission electron microscope and electron backscattering diffraction (EBSD), and mechanical properties were investigated using tensile test and Vickers microhardness measurements. The fine precipitates were formed after the aging process and improved the mechanical properties in the Aged-specimen compared to the solution-treated (ST) specimen. The EBSD analysis showed that the grain size after 6-cycle ARB process has decreased down to 650 and 420 nm for the ST-ARB and the Aged-ARB specimens, respectively. Also, with increasing the number of the ARB cycles, the fraction of HAGBs is increased in both the ST and Aged-specimens. It was found that as the number of cycles increased, the Vickers microhardness value and the yield strength and the tensile strength increased. The scanning electron microscope (SEM) images showed that as the number of the ARB cycles increased, the dimple size became smaller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, and A. Yanagida, Severe Plastic Deformation (SPD) Processes for Metals, Manuf. Technol., 2008, 57, p 716–735

    Article  Google Scholar 

  2. R.B. Figueiredo and T.G. Langdon, Using Severe Plastic Deformation for the Processing of Advanced Engineering Materials, Mater. Trans., 2009, 50, p 1613–1619

    Article  Google Scholar 

  3. R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater. Sci., 2006, 51, p 881–981

    Article  Google Scholar 

  4. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater. Sci., 2000, 45, p 103–189

    Article  Google Scholar 

  5. M. Richert, Q. Liu, and N. Hansen, Microstructural Evolution Over a Large Strain Range in Aluminum Deformed by Cyclic-Extrusion–Compression, Mater. Sci. Eng. A, 1999, 260, p 275–283

    Article  Google Scholar 

  6. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Novel Ultra-high Straining Process for Bulk Materials-Development of the Accumulative Roll-Bonding (ARB) Process, Acta Mater., 1999, 47, p 579–583

    Article  Google Scholar 

  7. E. Borhani, H. Jafarian, A. Shibata, and N. Tsuji, Texture Evolution in Al-0.2 mass% Sc Alloy during ARB Process and Subsequent Annealing, Mater. Trans., 2012, 53, p 1863–1869

    Article  Google Scholar 

  8. P. Hidalgo-Manrique, C.M. Cepeda-Jiménez, A. Orozco-Caballero, O.A. Ruano, and F. Carreño, Evolution of the Microstructure, Texture and Creep Properties of the 7075 Aluminum Alloy During Hot Accumulative Roll Bonding, Mater. Sci. Eng. A, 2014, 606, p 434–442

    Article  Google Scholar 

  9. E. Borhani, H. Jafarian, H. Adachi, D. Terada, and N. Tsuji, Annealing Behavior of Solution Treated and Aged Al-0.2wt% Sc Deformed by ARB, Mater. Sci. Forum., 2010, 667, p 211–216

    Article  Google Scholar 

  10. E. Borhani, H. Jafarian, T. Sato, D. Terada, N. Miyajima, and N. Tsuji, Proceedings of 12th International Conference on Aluminum Alloys (Japan), 2010, p 2168

  11. E. Borhani, H. Jafarian, D. Terada, H. Adachi, and N. Tsuji, Microstructural Evolution During ARB Process of Al-0.2 mass% Sc Alloy Containing Al3Sc Precipitates in Starting Structures, Mater. Trans., 2011, 53, p 72–80

    Article  Google Scholar 

  12. H. Pirgazi, A. Akbarzadeh, R. Petrov, and L. Kestens, Microstructure Evolution and Mechanical Properties of AA1100 Aluminum Sheet Processed by Accumulative Roll Bonding, Mater. Sci. Eng. A, 2008, 497, p 132–138

    Article  Google Scholar 

  13. S.H. Lee, Y. Saito, T. Sakai, and H. Utsunomiya, Microstructure and Mechanical Properties 6061 Aluminum Alloy Processed by Accumulative Roll Bonding, Mater. Sci. Eng. A, 2002, 325, p 228–235

    Article  Google Scholar 

  14. N. Tsuji, T. Toyoda, Y. Minamino, Y. Koizumi, T. Yamane, M. Komatsu, and M. Kiritani, Microstructural Change of Ultrafine-Grained Aluminum During High-Speed Plastic Deformation, Mater. Sci. Eng. A, 2003, 350, p 108–116

    Article  Google Scholar 

  15. J.M. Silcock, T.J. Heal, and H.K. Hardy, Structural Aging Characteristics of Binary Aluminium–Copper Alloys. J. Inst. Met. 1953–1954, 82, p 239–248

  16. M. Murayama, Z. Horita, and K. Hono, Microstructure of Two-Phase Al-1.7 at% Cu Alloy Deformed by Equal-Channel Angular Pressing, Acta Mater., 2001, 49, p 21–29

    Article  Google Scholar 

  17. X. Huang, N. Tsuji, N. Hansen, and Y. Minamino, Microstructural Evolution During Accumulative Roll-Bonding of Commercial Purity Aluminum, Mater. Sci. Eng. A, 2003, 340, p 265–271

    Article  Google Scholar 

  18. B.G. Clark, I.M. Robertson, L.M. Dougherty, D.C. Ahn, and P. Sofronis, High-Temperature Dislocation-Precipitate Interactions in Al Alloys: An In Situ Transmission Electron Microscopy Deformation Study, Mater. Res., 2005, 20, p 1792–1801

    Article  Google Scholar 

  19. F.J. Humphreys and P.B. Hirsch, Work-Hardening and Recovery of Dispersion Hardened Alloys, Philos. Mag., 1976, 34, p 373–390

    Article  Google Scholar 

  20. F.J. Humphreys, Local Lattice Rotations at Second Phase Particles in Deformed Metals, Acta Metal., 1979, 27, p 1801–1814

    Article  Google Scholar 

  21. P.J. Apps, J.R. Bowen, P.B. Prangnell, Nanomaterials by Severe Plastic Deformation-NANSPD2, M. Zehetbauer, R.Z. Valiev, Eds., Vienna, Austria, 2002, p 138

  22. P.J. Apps, J.R. Bowen, and P.B. Prangnell, The Effect of Coarse Second-Phase Particles on the Rate of Grain Refinement During Severe Deformation Processing, Acta Mater., 2003, 51, p 2811–2822

    Article  Google Scholar 

  23. B.K. Min, H.W. Kim, and S.B. Kang, Effect of Al3Sc Precipitate on the Microstructural Evolution During Accumulative Roll Bonding in Al–0.2 wt.% Sc Alloy, J. Mater. Process. Technol., 2005, 162–163, p 355–361

    Article  Google Scholar 

  24. S.G. Jia, M.S. Zheng, P. Liu, F.Z. Ren, B.H. Tian, G.S. Zhou, and H.F. Lou, Aging Properties Studies in a Cu–Ag–Cr Alloy, Mater. Sci. Eng. A, 2006, 419, p 8–11

    Article  Google Scholar 

  25. R.E. Smallman and R.J. Bishop, Metals and Materials: Science, Processes, Applications, Butterworth-Heinemann, Oxford, 1995

    Google Scholar 

  26. S.Y. Hu, M.I. Baskes, M. Stan, and L.Q. Chen, Atomistic calculations of interfacial energies, nucleus shape and size of θ′ precipitates in Al–Cu alloys, Acta Mater., 2006, 54, p 4699–4707

    Article  Google Scholar 

  27. I. Gutierrez-Urrutia, M.A. Mu˜noz-Morris, and D.G. Morris, The Effect of Coarse Second-Phase Particles and Fine Precipitates on Microstructure Refinement and Mechanical Properties of Severely Deformed Al Alloy, Mater. Sci. Eng. A, 2005, 394, p 399–410

    Article  Google Scholar 

  28. Z. Horita, K. Oh-ishi, and K. Kaneko, Microstructure control using severe plastic deformation, Sci. Tech. Adv. Mater., 2006, 7, p 649–654

    Article  Google Scholar 

  29. J. Rosler, H. Harders, and M. Baker, Mechanical Behaviour of Engineering Materials: Metals, Ceramics, Polymers and Composites, Springer, Berlin, 2007

    Google Scholar 

  30. J. Wang, I.J. Beyerlein, A. Misra, S.M. Valone, and T.C. Germann, Atomistic Modeling of Dislocation-Interface Interaction, 3rd International Conference on Heterogeneous Material Mechanics, May 22–26 (Shanghai, China), 2011

  31. ASM, ASM Metals Handbook Fractography, Vol 12, ASM, Metals Park, 1987

    Google Scholar 

  32. R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 3rd ed., John Wiley & Sons Inc., Singapore, 1989

    Google Scholar 

  33. B. Azad, E. Borhani, and H.R. Mohammadian Semnani, Fracture Behavior of Al-0.2wt%Zr Alloy Processed by Accumulative Roll Bonding (ARB) Process, Kovove Mater., 2015 (in press)

  34. ChVA Narasayya, P. Rambabu, M.K. Mohan, R. Mitra, and N.E. Prasad, Tensile Deformation and Fracture Behaviour of an Aerospace Aluminium Alloy AA2219 in Different Ageing Conditions, Proc. Mater. Sci., 2014, 6, p 322–330

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Azad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azad, B., Borhani, E. The Effect of Al2Cu Precipitate Size on Microstructure and Mechanical Properties of Al-2 wt.%Cu Alloys Fabricated by ARB. J. of Materi Eng and Perform 24, 4789–4796 (2015). https://doi.org/10.1007/s11665-015-1800-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1800-y

Keywords

Navigation