Log in

Ion Bombardment-Induced Stress Mechanism for the Formation of Ag Nanotwinned Films on Si Substrates

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nanotwinned face-centered-cubic (FCC) metals have gained significant attention recently due to their exceptional mechanical and electrical properties. Among all the FCC metals, Ag has the lowest stacking fault energy, which allows twin formation to easily occur. In this study, Ag films with a thickness of 4 µm were deposited on Si (100) substrates pre-coated with Ti adhesion layers by electron beam evaporation. With ion beam assistance during the evaporation process, highly (111)-textured and high-density nanotwinned Ag films with excellent properties were produced. Both x-ray diffraction (XRD) and electron backscatter diffraction (EBSD) analyses indicate that the Ag film possesses a strong (111) preferred orientation. In addition, statistical measurements from transmission electron microscopy (TEM) images show that the average twin spacing in nanotwinned Ag films with a deposition rate of 1.8 nm/s is only 6.1 nm. However, conventional models based on thermodynamics are insufficient to describe the formation of growth twins in an ion beam-assisted deposition system. Therefore, an ion bombardment stress model is introduced in this work. The results of the mechanism of deformation twinning are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Idrissi, B. Wang, M.S. Colla, J.P. Raskin, D. Schryvers, and T. Pardoen, Ultrahigh strain hardening in thin palladium films with nanoscale twins. Adv. Mater. 23(18), 2119 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. B. Wang, H. Idrissi, H. Shi, M.-S. Colla, S. Michotte, J.-P. Raskin, T. Pardoen, and D. Schryvers, Texture-dependent twin formation in nanocrystalline thin Pd films. Scripta Mater. 66(11), 866 (2012).

    Article  CAS  Google Scholar 

  3. B. Amin-Ahmadi, H. Idrissi, M. Galceran, M.-S. Colla, J.-P. Raskin, T. Pardoen, S. Godet, and D. Schryvers, Effect of deposition rate on the microstructure of electron beam evaporated nanocrystalline palladium thin films. Thin Solid Films 539, 145 (2013).

    Article  CAS  Google Scholar 

  4. K. Han, J. Hirth, and J. Embury, Modeling the formation of twins and stacking faults in the Ag-Cu system. Acta Mater. 49(9), 1537 (2001).

    Article  CAS  Google Scholar 

  5. X. Zhang, A. Misra, H. Wang, T. Shen, M. Nastasi, T. Mitchell, J. Hirth, R. Hoagland, and J. Embury, Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning. Acta Mater. 52(4), 995 (2004).

    Article  CAS  Google Scholar 

  6. D. Bufford, H. Wang, and X. Zhang, High strength, epitaxial nanotwinned Ag films. Acta Mater. 59(1), 93 (2011).

    Article  CAS  Google Scholar 

  7. T. Gray, Elements: A visual exploration of every known atom in the universe (UK: Hachette, 2012).

    Google Scholar 

  8. M.I. Baskes, Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 46(5), 2727 (1992).

    Article  CAS  Google Scholar 

  9. DA Porter and KE (2009) Easterling, phase transformations in metals and alloys (revised reprint), CRC press

  10. L. Velasco, M.N. Polyakov, and A.M. Hodge, Influence of stacking fault energy on twin spacing of Cu and Cu-Al alloys. Scripta Mater. 83, 33 (2014).

    Article  CAS  Google Scholar 

  11. D. Xu, V. Sriram, V. Ozolins, J.-M. Yang, K.-N. Tu, G.R. Stafford, and C. Beauchamp, In situ measurements of stress evolution for nanotwin formation during pulse electrodeposition of copper. J. Appl. Phys. 105(2), 023521 (2009).

    Article  Google Scholar 

  12. D. Xu, W.L. Kwan, K. Chen, X. Zhang, V. Ozoliņš, and K.-N. Tu, Nanotwin formation in copper thin films by stress/strain relaxation in pulse electrodeposition. Appl. Phys. Lett. 91(25), 254105 (2007).

    Article  Google Scholar 

  13. Y. Liu, D. Bufford, S. Rios, H. Wang, J. Chen, J. Zhang, and X. Zhang, A formation mechanism for ultra-thin nanotwins in highly textured Cu/Ni multilayers. J. Appl. Phys. 111(7), 073526 (2012).

    Article  Google Scholar 

  14. T.-C. Chan, Y.-Z. Chen, Y.-L. Chueh, and C.-N. Liao, Large-scale nanotwins in Cu films/Cu nanowires via stress engineering by a high-energy ion beam bombardment process: growth and characterization. J. Mater. Chem. C 2(46), 9805 (2014).

    Article  CAS  Google Scholar 

  15. G. Abadias, E. Chason, J. Keckes, M. Sebastiani, G.B. Thompson, E. Barthel, G.L. Doll, C.E. Murray, C.H. Stoessel, and L. Martinu, Stress in thin films and coatings: Current status, challenges, and prospects. J. Vacuum Sci. Technol. A: Vacuum, Surf., Films 36(2), 020801 (2018).

    Article  Google Scholar 

  16. S. Mayr and R. Averback, Effect of ion bombardment on stress in thin metal films. Phys. Rev. B 68(21), 214105 (2003).

    Article  Google Scholar 

  17. H. Windischmann, An intrinsic stress scaling law for polycrystalline thin films prepared by ion beam sputtering. J. Appl. Phys. 62(5), 1800 (1987).

    Article  CAS  Google Scholar 

  18. E.K. McCarthy, A.T. Bellew, J.E. Sader, and J.J. Boland, Poisson’s ratio of individual metal nanowires. Nat. Commun. 5(1), 1 (2014).

    Article  Google Scholar 

  19. S. Kibey, J. Liu, D. Johnson, and H. Sehitoglu, Predicting twinning stress in fcc metals: Linking twin-energy pathways to twin nucleation. Acta Mater. 55(20), 6843 (2007).

    Article  CAS  Google Scholar 

  20. Chakartnarodom P, Kongkajun N, and Senthongkaew P, (2015) Application of numerical method and statistical analysis in the integrated intensity calculation of the peaks from the x-ray diffraction (XRD) pattern of α-iron, Key Engineering Materials, 350-354.

  21. Q. Zhao, Y. Deng, N.W. Utomo, J. Zheng, P. Biswal, J. Yin, and L.A. Archer, On the crystallography and reversibility of lithium electrodeposits at ultrahigh capacity. Nature 12(1), 6034 (2021).

    CAS  Google Scholar 

  22. P.C. Wu and T.H. Chuang, Evaporation of Ag nanotwinned films on Si substrates with ion beam assistance. IEEE Trans. Comp., Packag. Manuf. Technol. 11(12), 2222 (2021).

    Article  CAS  Google Scholar 

  23. V. Sriram, J.-M. Yang, J. Ye, and A.M. Minor, Determining the stress required for deformation twinning in nanocrystalline and ultrafine-grained copper. Jom 60(9), 66 (2008).

    Article  CAS  Google Scholar 

  24. W. Abuzaid and H. Sehitoglu, Critical resolved shear stress for slip and twin nucleation in single crystalline FeNiCoCrMn high entropy alloy. Mater Charact 129, 288 (2017).

    Article  CAS  Google Scholar 

  25. R.E. Reed-Hill, R. Abbaschian, and R. Abbaschian, Physical metallurgy principles (New York: Van Nostrand, 1973).

    Google Scholar 

  26. Y. Zhu, X. Liao, and X. Wu, Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 57(1), 1 (2012).

    Article  CAS  Google Scholar 

  27. G. Cheng, H. Li, G. Xu, W. Gai, and L. Luo, In situ observation of nanotwins formation through twin terrace growth in pulse electrodeposited Cu films. Sci. Rep. 7(1), 1 (2017).

    Article  Google Scholar 

  28. W. Mason, H. McSkimin, and W. Shockley, Ultrasonic observation of twinning in tin. Phys. Rev. 73(10), 1213 (1948).

    Article  CAS  Google Scholar 

  29. L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, Ultrahigh strength and high electrical conductivity in copper. Science 304(5669), 422 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was sponsored by the Emerging Technology Application Program of the Hsinchu Science Park R & D program of Ag Materials Technology Co., LTD under Grant No. 112AO03A.

Funding

Funding was provided by the Emerging Technology Application Program of the Hsinchu Science Park R & D program of Ag Materials Technology Co., LTD (112AO03A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tung-Han Chuang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuang, TH., Lin, AY., Chen, YT. et al. Ion Bombardment-Induced Stress Mechanism for the Formation of Ag Nanotwinned Films on Si Substrates. J. Electron. Mater. 53, 2583–2590 (2024). https://doi.org/10.1007/s11664-023-10905-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10905-w

Keywords

Navigation