Log in

Fabrication and Description of Amorphous Ge33Se47Sn20 Films for Optical Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report the fabrication of a semiconductor thin layer of ternary chalcogenide, Ge33Se47Sn20, utilizing a thermal evaporation technique for optical applications. The chemical composition and crystal structure studies on Ge33Se47Sn20 thin films were carried out by energy-dispersive x-ray and x-ray diffraction measurements. The effect of ultraviolet (UV) irradiation on the linear and nonlinear optical properties of the Ge33Se47Sn20 thin films has been investigated from the UV–Visible spectra. The studied optical parameters of the virgin and UV-irradiated Ge33Se47Sn20 thin films were found to be strongly dependent upon UV irradiation time. The changes in the optical band gap of the Ge33Se47Sn20 thin films upon UV irradiation are due to bonding rearrangements. The significant changes in linear/nonlinear optical parameters with UV irradiation are useful for linear/nonlinear optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.A. Oke, O.O. Olotu, and T.-C. Jen, Atomic layer deposition of chalcogenide thin films: processes, film properties, applications, and bibliometric prospect. J. Mater. Res. Technol. 20, 991 (2022).

    Article  CAS  Google Scholar 

  2. R. Manivannan and S.N. Victoria, Preparation of chalcogenide thin films using electrodeposition method for solar cell applications: a review. Sol. Energy 173, 1144 (2018).

    Article  CAS  Google Scholar 

  3. S. Mishra, P. Chaudhary, B.C. Yadav, A. Umar, P. Lohia, and D.K. Dwivedi, Fabrication and characterization of an ultrasensitive humidity sensor based on chalcogenide glassy alloy thin films. Eng. Sci. 15, 138 (2021).

    CAS  Google Scholar 

  4. V.V. Akshay and S. Stenny Benny, Venkataprasad Bhat, Solution-processed antimony chalcogenides based thin film solar cells: a brief overview of recent developments. Sol. Energy 241, 728 (2022).

    Article  CAS  Google Scholar 

  5. S.A. Khan, R.M. Sahani, R.P. Tripathi, M.S. Akhtar, and A. Srivastava, Influence of gamma-irradiation on the optical and structural properties of Se85Te15-xBix nano-thin chalcogenide films. Radiat. Phys. Chem. 188, 109659 (2021).

    Article  CAS  Google Scholar 

  6. H. Chen, M.-Y. Ran, W.-B. Wei, X.-T. Wu, H. Lin, and Q.-L. Zhu, A comprehensive review on metal chalcogenides with three-dimensional frameworks for infrared nonlinear optical applications. Coord. Chem. Rev. 470, 214706 (2022).

    Article  CAS  Google Scholar 

  7. S.S. Fouad, G.A.M. Amin, and M.S. El-Bana, Physical and optical characterizations of Ge10Se90-xTex thin films in view of their spectroscopic ellipsometry data. J. Non-Cryst. Solids 481, 314 (2018).

    Article  CAS  Google Scholar 

  8. S.K. Pal, N. Mehta, H.E. Atyia, and S.S. Fouad, Investigation of optical band-gap and related optical properties in thin-films of Ge containing Se-Te-Sn alloys. J. Non-Cryst. Solids 551, 120399 (2021).

    Article  CAS  Google Scholar 

  9. I. Sharma and A.S. Hassanien, Effect of Ge-addition on physical and optical properties of chalcogenide Pb10Se90-xGex bulk glasses and thin films. J. Non-Cryst. Solids 548, 120326 (2020).

    Article  CAS  Google Scholar 

  10. I. Sharma, P. Sharma, and A.S. Hassanien, Optical properties and optoelectrical parameters of the quaternary chalcogenide amorphous Ge15SnxS35-xTe50 films. J. Non-Cryst. Solids 590, 121673 (2022).

    Article  CAS  Google Scholar 

  11. A.S. Hassanien and I. Sharma, Band-gap engineering, conduction and valence band positions of thermally evaporated amorphous Ge15-x Sbx Se50Te35 thin films: influences of Sb upon some optical characterizations and physical parameters. J. Alloys Compd. 798, 750 (2019).

    Article  CAS  Google Scholar 

  12. A.S. Hassanien, I.M. El Radaf, and A.A. Akl, Physical and optical studies of the novel non-crystalline CuxGe20-xSe40Te40 bulk glasses and thin films. J. Alloys Compd. 849, 156718 (2020).

    Article  CAS  Google Scholar 

  13. S.K. Pal, N. Mehta, S.S. Fouad, and H.E. Atyia, Dielectric behavior of amorphous thin films of Se–Te–Sn-Ge system. Solid State Sci. 104, 106289 (2020).

    Article  CAS  Google Scholar 

  14. Y. Saito, M. Morota, K. Makino, J. Tominaga, A.V. Kolobov, and P. Fons, Recent developments concerning the sputter growth of chalcogenide-based layered phase-change materials. Mater. Sci. Semicond. Process 135, 106079 (2021).

    Article  CAS  Google Scholar 

  15. L. Tichy and H. Ticha, Correlation between photo-induced red shift of the optical band gap and the slope of Urbach edge in amorphous and glassy As2S3. Mater. Lett. 164, 232 (2016).

    Article  CAS  Google Scholar 

  16. S. Agarwal, P. Lohia, and D.K. Dwivedi, Emerging phase change memory devices using non-oxide semiconducting glasses. J. Non-Cryst. Solids 597, 121874 (2022).

    Article  CAS  Google Scholar 

  17. S. Kang, Y. Fu, H. Gu, and C. Lin, Chalcogenide glass for thermoelectric application. J. Non-Cryst. Solids 15, 100111 (2022).

    CAS  Google Scholar 

  18. S. Das, S. Senapati, D. Alagarasan, S. Varadharajaperumal, R. Ganesan, and R. Naik, Enhancement of nonlinear optical parameters upon phase transition in new quaternary Ge20Ag10Te10Se60 films by annealing at various temperatures for optoelectronic applications. J. Alloys Compd. 927, 167000 (2022).

    Article  CAS  Google Scholar 

  19. S. Slang, K. Palka, J. Jancalek, M. Kurka, and M. Vlcek, Deposition and characterization of solution processed Se-rich Ge–Se thin films with specular optical quality using multi-component solvent approach. Opt. Mater. Express 10, 2973 (2020).

    Article  CAS  Google Scholar 

  20. R.K. Pan, H.Z. Tao, J.Z. Wang, J.Y. Wang, H.F. Chu, T.J. Zhang, D.F. Wang, and X.J. Zhao, Structure and optical properties of amorphous Ge–Se films prepared by pulsed laser deposition. Optik 124, 4943 (2013).

    Article  CAS  Google Scholar 

  21. S.I. Qashou, A.M. Ali, H.H. Somaily, H. Algarn, M.M. Hafiz, and M. Rashad, Linear and nonlinear optical investigations of Ge25Se75 thin films at different annealing temperatures. Phys. B Condens. Matter 625, 413351 (2022).

    Article  CAS  Google Scholar 

  22. M.S. El-Bana and S.S. Fouad, Opto-electrical characterisation of As33Se67-xSnx thin films. J. Alloys Compd. 695, 1532 (2017).

    Article  CAS  Google Scholar 

  23. A.A.A. Darwish and H.A.M. Ali, On annealing induced effect in optical properties of amorphous GeSeSn chalcogenide films for optoelectronic applications. J. Alloys Compd. 710, 431 (2017).

    Article  CAS  Google Scholar 

  24. P. Bavafa and M. Rezvani, Effect of Sn do** in optical properties of Se-Ge glass and glass-ceramics. Results Phys. 10, 777 (2018).

    Article  Google Scholar 

  25. Y.B. Saddeek, K.A. Aly, T. Alharbi, A. Dahshan, S.A.M. Issa, M. Ahmad, and M.M. Soraya, Mechanical and electrical parameters of a-Ge-Se-Sn glasses. Phys. B Condens. Matter 583, 412059 (2020).

    Article  CAS  Google Scholar 

  26. K.A. Aly, On the study of the optical constants for different compositions of Snx(GeSe)100–x thin films in terms of the electronic polarizability, electronegativity and bulk modulus. Appl. Phys. A 120, 293 (2015).

    Article  CAS  Google Scholar 

  27. A.M. Abd-Elnaiem, A.Z. Mahmoud, and S. Moustafa, Structural and optical properties of thermally evaporated and annealed Ge20Se76Sn4 thin films. Opt. Mater. 111, 110607 (2021).

    Article  CAS  Google Scholar 

  28. F. Zhao, Y. Guo, X. Zhou, W. Shi, and Yu. Guihua, Materials for solar-powered water evaporation. Nat. Rev. Mater. 5, 388 (2020).

    Article  Google Scholar 

  29. Z. Chen, J. Li, and Y. Zheng, Heat-mediated optical manipulation. Chem. Rev. 122, 3122 (2022).

    Article  CAS  Google Scholar 

  30. L. Lin, J. Li, W. Li, M.N. Yogeesh, J. Shi, X. Peng, Y. Liu, B.B. Rajeeva, M.F. Becker, Y. Liu, D. Akinwande, and Y. Zheng, Optothermoplasmonic patterning: optothermoplasmonic nanolithography for on-demand patterning of 2D materials. Adv. Funct. Mater. 28, 1870299 (2018).

    Article  Google Scholar 

  31. P. Priyadarshini, S. Das, and R. Naik, A review on metal-doped chalcogenide films and their effect on various optoelectronic properties for different applications. RSC Adv. 12, 9599 (2022).

    Article  CAS  Google Scholar 

  32. B. Qiao, S. Dai, Xu. Yinsheng, P. Zhang, X. Shen, Xu. Tiefeng, Q. Nie, W. Ji, and F. Chen, Third-order optical nonlinearities of chalcogenide glasses within Ge-Sn-Se ternary system at a mid-infrared window. Opt. Mater. Express 2, 2360 (2015).

    Google Scholar 

  33. Multiple-Beam Interferometry Surface and Films, in: S. Tolansky (Ed.), Oxford University Press, London (1978) p.76

  34. M.M. El-Nahass, Optical properties of tin diselenide films. J. Mater. Sci. 27, 6597 (1992).

    Article  CAS  Google Scholar 

  35. M. Di Giulio, G. Micocci, R. Rella, P. Siciliano, and A. Tepore, Optical absorption of tellurium suboxide thin films. Phys. Status Solidi A 136, K101 (1993).

    Article  Google Scholar 

  36. C.A. Spence and S.R. Elliott, Light-induced oxidation and band-edge shifts in thermally evaporated films of germanium chalcogenide glasses. Phys. Rev. B 39, 5452 (1989).

    Article  CAS  Google Scholar 

  37. DCh. Sati, A. Dahshan, and P. Sharma, Photoinduced effects for amorphous chalcogenide semiconductors. Appl. Mater. Today 17, 142 (2019).

    Article  Google Scholar 

  38. R. Chauhan, A.K. Srivastava, A. Tripathi, and K.K. Srivastava, Linear and nonlinear optical changes in amorphous As2Se3 thin film upon UV exposure. Prog. Nat. Sci. Mater. Int. 21, 205 (2011).

    Article  Google Scholar 

  39. R. Chauhan, A.K. Srivastava, A. Tripathi, and K.K. Srivastava, Photo-induced optical changes in GexAs40Se60−x thin films. Prog. Nat. Sci. Mater. Int. 20, 54 (2010).

    Article  Google Scholar 

  40. P. Knotek, L. Tichy, D. Arsova, Z.G. Ivanova, and H. Ticha, Irreversible photobleaching, photorefraction and photoexpansion in GeS2 amorphous film. Mater. Chem. Phys. 119, 315 (2010).

    Article  CAS  Google Scholar 

  41. A.M. Hassanien, T.A. Altalhi, M.S. Refat, S. Shakya, A.A. Atta, M. Alsawat, A.N. Al-Hazaa, and K.A. Asla, Exploring microstructural, optical, electrical, and DFT/TD-DFT studies of boron subphthalocyanine chloride for renewable energy applications. Optik 263, 169367 (2022).

    Article  CAS  Google Scholar 

  42. M.M. El-Nahass, H.A. Zayed, E.E. Elgarhy, and A.M. Hassanien, Effect of γ- irradiation on structural, optical and electrical properties of thermally evaporated iron (III) chloride tetraphenylporphyrin thin films. Radiat. Phys. Chem. 139, 173 (2017).

    Article  CAS  Google Scholar 

  43. A.M. Hassanien, T.A. Altalhi, A.A. Atta, A.N. AlHazaa, M. Alsawat, G.A.M. Mersal, A.M.A. Adam, and M.S. Refat, Studying spectroscopic, cyclic voltammetry, and electrical properties of novel 4-amino antipyrine derivative for photonic applications. J. Mol. Struct. 1272, 134201 (2023).

    Article  CAS  Google Scholar 

  44. S.H. Wemple and M. DiDomenico Jr., Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3, 1338 (1971).

    Article  Google Scholar 

  45. S.H. Wemple, Refractive-index behavior of amorphous semiconductors and glasses. Phys. Rev. B 7, 3767 (1973).

    Article  CAS  Google Scholar 

  46. D. Edward Palik, Handbook of Optical Constants of Solids (New York: Academic Press, 1985), p.265.

    Google Scholar 

  47. R.C. Miller, Optical second harmonic generation in piezoelectric crystals. Appl. Phys. Lett. 5, 17 (1964).

    Article  CAS  Google Scholar 

  48. C.C. Wang, Empirical relation between the linear and the third-order nonlinear optical susceptibilities. Phys. Rev. B 2, 2045 (1970).

    Article  Google Scholar 

  49. L. Tichý, H. Tichá, P. Nagels, R. Callaerts, R. Mertens, and M. Vlček, Optical properties of amorphous As–Se and Ge–As–Se thin films. Mater. Lett. 39, 122 (1999).

    Article  Google Scholar 

  50. R. del Coso and J. Solis, Relation between nonlinear refractive index and third-order susceptibility in absorbing media. J. Opt. Soc. Am. B 21, 640 (2004).

    Article  Google Scholar 

Download references

Acknowledgments

The researchers would like to acknowledge Deanship of Scientific Research, Taif University for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Hassanien.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanien, A.M., Darwish, A.A.A., Qashou, S.I. et al. Fabrication and Description of Amorphous Ge33Se47Sn20 Films for Optical Applications. J. Electron. Mater. 52, 4495–4502 (2023). https://doi.org/10.1007/s11664-023-10329-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10329-6

Keywords

Navigation