Log in

Defect Optimization of CZTS/MASnI3 Heterojunction Solar Cell Yielding 30.8% Efficiency

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A heterojunction solar cell with two absorber layers has been simulated using SCAPS-1D software. To overcome the toxicity of lead in perovskite-based solar cells, a tin-based perovskite structure has been used along with copper zinc tin sulfide (CZTS). Considering two absorber layers, key parameters like thickness, defects, and interface defect densities have been optimized to obtain an enhanced efficiency. A detailed study of defect density and its variation with lifetime, diffusion length, and efficiency are described. The investigation reveals that minimum defect density results in maximum output. On optimizing various parameters, an enhanced result of open circuit voltage (Voc) 0.92 V, short circuit current density (Jsc) 42.74 mA/cm2, fill factor (FF) 78.32%, and efficiency (ɳ) 30.83% have been yielded. A comparative study with previous experimental and theoretical data has been carried out to validate the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Best Research-Cell Efficiency Chart. NREL, https://www.nrel.gov/pv/cell-efficiency.html.

  2. N.K. Sinha, P. Roy, D.S. Ghosh, and A. Khare, Simulation and analysis of Schottky junction perovskite solar cells (SJPSCs). IOP Conf. Ser. Mater. Sci. Eng. 1120, 012017 (2021).

    Article  CAS  Google Scholar 

  3. Q. Wu, C. Xue, Y. Li, P. Zhou, W. Liu, J. Zhu, S. Dai, C.F. Zhu, and S. Yang, Kesterite Cu2ZnSnS4 as a low cost inorganic hole transporting material for high efficiency perovskite solar cells. ACS Appl. Mater. Interfaces 7(51), 28466 (2015).

    Article  CAS  Google Scholar 

  4. H.T. Ali, M. Jamil, K. Mahmood, M. Yusuf, S. Ikram, A. Ali, N. Amin, K. Javaid, M.Y. Ali, and M.R. Nawaz, A simulation study of perovskite based solar cells using CZTS as HTM with different electron transporting materials. J. Ovonic Res. 17(5), 437 (2021).

    CAS  Google Scholar 

  5. L. **ang, F. Gao, Y. Cao, D. Li, Q. Liu, H. Liu, and S. Li, Progress on the stability and encapsulation techniques of perovskite solar cells. Org. Electron. 106, 106515 (2022).

    Article  CAS  Google Scholar 

  6. F. Liu, J. Zhu, J. Wei, Y. Li, M. Lv, S. Yang, B. Zhang, J. Yao, and S. Dai, Numerical simulation: toward the design of high-efficiency planar perovskite solar cells. Appl. Phys. Lett. 104, 253508 (2014).

    Article  Google Scholar 

  7. A. Hima, A. Khechekhouche, I. Kemerchou, N. Lakhdar, B. Benhaoua, F. Rogti, I. Telli, and A. Saadoun, GPVDM simulation of layer thickness effect on power conversion efficiency of CH3NH3PbI3 based planar heterojunction solar cell. Int. J. Energ. 3(1), 37 (2018).

    Google Scholar 

  8. A. Hima, N. Lakhdar, B. Benhaoua, A. Saadoune, I. Kemerchou, and F. Rogti, An optimized perovskite solar cell designs for high conversion efficiency. Superlattices Microstruct. 129, 240 (2019).

    Article  CAS  Google Scholar 

  9. J. Gong, Simulation of steady-state characteristics of heterojunction perovskite solar cells in wxAMPS. Opt. Int. J. Light Electron Opt. 232, 166382 (2021).

    Article  CAS  Google Scholar 

  10. I. Mohanty, S. Mangal, and U.P. Singh, Performance optimization of lead free-MASnI3/CIGS heterojunction solar cell with 28.7% efficiency: a numerical approach. Opt. Mater. 122, 111812 (2021).

    Article  CAS  Google Scholar 

  11. A.K. Singh, S. Srivastava, A. Mahapatra, J.K. Baral, and B. Pradhan, Performance optimization of lead free-MASnI3 based solar cell with 27% efficiency by numerical simulation. Opt. Mater. 117, 111193 (2021).

    Article  CAS  Google Scholar 

  12. S.K. Mishra, S. Padhy, and U.P. Singh, Silver incorporated bilayer Kesterite solar cell for enhanced device performance: a numerical study. Sol. Energy 233, 1 (2022).

    Article  CAS  Google Scholar 

  13. A. Shafi, L. Khan, S. Ullah, Md.Y. Shafi, A. Bouich, H. Ullah, and B. Mari, Novel compositional engineering for ~26% efficient CZTS-perovskite tandem solar cell. Opt. Int. J. Light Electron Opt. 253, 168568 (2022).

    Article  CAS  Google Scholar 

  14. R. Tala-Ighil Zaïr, C. Oudjehani, and K. Tighilt, SCAPS simulation for perovskite solar cell. J. Sol. Energy Res. Updates 8, 21 (2021).

    Article  Google Scholar 

  15. B. Mahapatra, R.V. Krishna, and P.K. Patel, Design and optimization of CuSCN/CH3NH3PbI3/TiO2 perovskite solar cell for efficient performance. Opt. Commun. 504, 127496 (2022).

    Article  CAS  Google Scholar 

  16. S. Yasin, T. Al Zoubi, and M. Moustafa, Design and simulation of high efficiency lead-free heterostructure perovskite solar cell using SCAPS-1D. Opt. Int. J. Light Electron Opt. 229, 166258 (2021).

    Article  CAS  Google Scholar 

  17. K. Tan, P. Lin, G. Wang, Y. Liu, Z. Xu, and Y. Linm, Controllable design of solid-state perovskite solar cells by SCAPS device simulation. Solid-State Electron. S0038–1101, 30142 (2016).

    Google Scholar 

  18. A.E. Benzetta, M. Abderrezek, and E. Djeghlal, Numerical study of CZTS/CZTSSe tandem thin film solar cell using SCAPS-1D. Opt. Int. J. Light Electron Opt. 242, 167320 (2021).

    Article  CAS  Google Scholar 

  19. Y. Chen and H. Zhou, Defects chemistry in high-efficiency and stable perovskite solar cells. J. Appl. Phys. 128, 060903 (2020).

    Article  CAS  Google Scholar 

  20. I.T. Bello, M.K. Awodele, O. Adedokun, O. Akinrinola, and A. Oladiran Awodugba, Modeling and simulation of CZTS-perovskite sandwiched tandem solar cell. Turk. J. Phys. 42, 321 (2018).

    CAS  Google Scholar 

  21. X. Li, X. Zhao, Y. Gu, X. Yin, H. Nan, M. Tai, H. Chen, and H. Shen, Lin, H, Solution-processed kesterite Cu2ZnSnS4 as efficient hole extraction layer for inverted perovskite solar cells. Chem. Lett. 47, 817 (2018).

    Article  CAS  Google Scholar 

  22. I. Kabir and S.K.A. Mahmood, Comparative study on perovskite solar cells using inorganic transport layers. In IEEE Xplore (2019).

Download references

Acknowledgments

The authors would like to thank Marc Burgelman, ELSI, University of Gent, Belgium for providing the SCAPS simulation software (Version: SCAPS3307; 21 February, 2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sutanu Mangal.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, I., Mangal, S. & Singh, U.P. Defect Optimization of CZTS/MASnI3 Heterojunction Solar Cell Yielding 30.8% Efficiency. J. Electron. Mater. 52, 2587–2595 (2023). https://doi.org/10.1007/s11664-023-10221-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10221-3

Keywords

Navigation